A systematic review on Drug Re-profiling/Re-Purposing
DOI:
https://doi.org/10.51611/iars.irj.v12i02.2022.218Keywords:
Drug Repurposing, Medicine Strategies, COVID-19, Cancer, Orphan Diseases, General MedicineAbstract
Hardcore capability of drug repurposing has allowed rising population of diversified diseased patients to approach various medications with known safety profiles. In an ongoing scenario considering current pharmaceutical market, we have numerous drugs that are approved and repurposed by the U.S. Food and Drug Administration. Developing and bringing a novel drug molecule from the laboratory to a market requires a lot of investment in terms of money, efforts, and time. On the other hand, repurposing a drug holds the capability of bringing out best cures with harmless, ease availability and inexpensive quality. Sildenafil, Chloroquine, Metformin are some examples of repurposed drug used in multiple disease models. Despite numerous challenges, drug repurposing stood to be a core component to any comprehensive drug re-discovering strategies which has been planned to bring benefit to the patients suffering from a wide variety of dreadful ailments. In this review, we have discussed the various repurposed drugs in numerous types of cancer, deadly novel coronavirus (SARS-CoV-2) and some orphan diseases. This paper holds various examples of drugs which are still under clinical trial and have high chances of being approved as repurposed drugs benefitting humankind.
Downloads
References
Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011;12(4):357-368. doi:10.1093/bib/bbr005 DOI: https://doi.org/10.1093/bib/bbr005
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies: Drug repurposing in pharmaceutical companies. Br J Pharmacol. 2018;175(2):168-180. doi:10.1111/bph.13798 DOI: https://doi.org/10.1111/bph.13798
Sangkum P, Sirisopana K, Matang W, et al. Efficacy of the Orally Disintegrating Strip Sildenafil for the Treatment of Erectile Dysfunction: A Prospective, Randomized Trial. Sex Med. 2021;9(6):100453. doi:10.1016/j.esxm.2021.100453 DOI: https://doi.org/10.1016/j.esxm.2021.100453
von Büren M, Rodler S, Wiesenhütter I, et al. Digital Real-world Data Suggest Patient Preference for Tadalafil over Sildenafil in Patients with Erectile Dysfunction. Eur Urol Focus. Published online May 2021:S2405456921001255. doi:10.1016/j.euf.2021.04.019 DOI: https://doi.org/10.1016/j.euf.2021.04.019
Upputuri B, Pallapati MS, Tarwater P, Srikantam A. Thalidomide in the treatment of erythema nodosum leprosum (ENL) in an outpatient setting: A five-year retrospective analysis from a leprosy referral centre in India. Adams LB, ed. PLoS Negl Trop Dis. 2020;14(10):e0008678. doi:10.1371/journal.pntd.0008678 DOI: https://doi.org/10.1371/journal.pntd.0008678
Issa N, Byers S, Dakshanamurthy S. Drug Repurposing: Translational Pharmacology, Chemistry, Computers and the Clinic. Curr Top Med Chem. 2013;13(18):2328-2336. doi:10.2174/15680266113136660163 DOI: https://doi.org/10.2174/15680266113136660163
Kuo YC, Wang IH, Rajesh R. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson’s disease therapy. Acta Biomater. 2021;119:360-374. doi:10.1016/j.actbio.2020.11.015 DOI: https://doi.org/10.1016/j.actbio.2020.11.015
Isoardi KZ, Parker LE, Page CB, et al. K ETAMINE AS a RESCUE TREATMENT FOR SEVERE ACUTE BEHAVIOURAL DISTURBANCE : A prospective prehospital study. Emerg Med Australas. 2021;33(4):610-614. doi:10.1111/1742-6723.13682 DOI: https://doi.org/10.1111/1742-6723.13682
Yacouba A, Olowo-okere A, Yunusa I. Repurposing of antibiotics for clinical management of COVID-19: a narrative review. Ann Clin Microbiol Antimicrob. 2021;20(1):37. doi:10.1186/s12941-021-00444-9 DOI: https://doi.org/10.1186/s12941-021-00444-9
Schcolnik-Cabrera A, Juárez-López D, Duenas-Gonzalez A. Perspectives on Drug Repurposing. Curr Med Chem. 2021;28(11):2085-2099. doi:10.2174/0929867327666200831141337 DOI: https://doi.org/10.2174/0929867327666200831141337
Alnajjar R, Mostafa A, Kandeil A, Al-Karmalawy AA. Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon. 2020;6(12):e05641. doi:10.1016/j.heliyon.2020.e05641 DOI: https://doi.org/10.1016/j.heliyon.2020.e05641
Haslam B, Perez-Breva L. Learning disease relationships from clinical drug trials. J Am Med Inform Assoc. 2017;24(1):13-23. doi:10.1093/jamia/ocw003 DOI: https://doi.org/10.1093/jamia/ocw003
Panchapakesan U, Pollock C. Drug repurposing in kidney disease. Kidney Int. 2018;94(1):40-48. doi:10.1016/j.kint.2017.12.026 DOI: https://doi.org/10.1016/j.kint.2017.12.026
Marouf BH, Dizaye K. Re-tasking the use of pre-existing medications and potential therapeutic options for coronavirus disease (COVID-19): systematic review of clinical studies. Drug Discov Ther. 2020;14(3):109-116. doi:10.5582/ddt.2020.03035 DOI: https://doi.org/10.5582/ddt.2020.03035
Jain P, Jain SK, Jain M. Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Curr Mol Med. 2021;21(2):111-132. doi:10.2174/1566524020666200619125404 DOI: https://doi.org/10.2174/1566524020666200619125404
Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J Pharm Sci. 2020;6(1):27. doi:10.1186/s43094-020-00047-9 DOI: https://doi.org/10.1186/s43094-020-00047-9
Usha T, Middha SK, Kukanur AA, et al. Drug Repurposing Approaches: Existing Leads for Novel Threats and Drug Targets. Curr Protein Pept Sci. 2021;22(3):251-271. doi:10.2174/1389203721666200921152853 DOI: https://doi.org/10.2174/1389203721666200921152853
Gns HS, Gr S, Murahari M, Krishnamurthy M. An update on Drug Repurposing: Re-written saga of the drug’s fate. Biomed Pharmacother. 2019;110:700-716. doi:10.1016/j.biopha.2018.11.127 DOI: https://doi.org/10.1016/j.biopha.2018.11.127
Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS, Enger PØ. Drug repurposing in cancer. Pharmacol Res. 2017;124:74-91. doi:10.1016/j.phrs.2017.07.013 DOI: https://doi.org/10.1016/j.phrs.2017.07.013
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479-1508. doi:10.1007/s43440-020-00155-6 DOI: https://doi.org/10.1007/s43440-020-00155-6
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci. 2021;42(4):255-267. doi:10.1016/j.tips.2021.01.003 DOI: https://doi.org/10.1016/j.tips.2021.01.003
Anighoro A, Bajorath J, Rastelli G. Polypharmacology: Challenges and Opportunities in Drug Discovery: Miniperspective. J Med Chem. 2014;57(19):7874-7887. doi:10.1021/jm5006463 DOI: https://doi.org/10.1021/jm5006463
Thatai P, Tiwary AK, Sapra B. Progressive development in experimental models of transungual drug delivery of anti-fungal agents. Int J Cosmet Sci. 2016;38(1):1-12. doi:10.1111/ics.12230 DOI: https://doi.org/10.1111/ics.12230
De Prá MAA, Vardanega R, Loss CG. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int J Pharm. 2021;609:121159. doi:10.1016/j.ijpharm.2021.121159 DOI: https://doi.org/10.1016/j.ijpharm.2021.121159
Grassi G, Grassi M. Drug Repurposing in Human Cancers. Curr Med Chem. 2020;27(42):7213-7213. doi:10.2174/092986732742201105104417 DOI: https://doi.org/10.2174/092986732742201105104417
Beach RA, McDonald KA, Barrett BM, Abdel-Qadir H. Side effects of low-dose oral minoxidil for treating alopecia. J Am Acad Dermatol. 2021;84(5):e239-e240. doi:10.1016/j.jaad.2020.12.038 DOI: https://doi.org/10.1016/j.jaad.2020.12.038
Ngidi NTP, Machaba KE, Mhlongo NN. In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. Molecules. 2022;27(3):668. doi:10.3390/molecules27030668 DOI: https://doi.org/10.3390/molecules27030668
Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020;323(9):844. doi:10.1001/jama.2020.1166 DOI: https://doi.org/10.1001/jama.2020.1166
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58. doi:10.1038/nrd.2018.168 DOI: https://doi.org/10.1038/nrd.2018.168
Wilkinson GF, Pritchard K. In Vitro Screening for Drug Repositioning. J Biomol Screen. 2015;20(2):167-179. doi:10.1177/1087057114563024 DOI: https://doi.org/10.1177/1087057114563024
Jiao M, Liu G, Xue Y, Ding C. Computational Drug Repositioning for Cancer Therapeutics. Curr Top Med Chem. 2015;15(8):767-775. doi:10.2174/1568026615666150302105831 DOI: https://doi.org/10.2174/1568026615666150302105831
Thirunavukkarasu MK, Suriya U, Rungrotmongkol T, Karuppasamy R. In Silico Screening of Available Drugs Targeting Non-Small Cell Lung Cancer Targets: A Drug Repurposing Approach. Pharmaceutics. 2021;14(1):59. doi:10.3390/pharmaceutics14010059 DOI: https://doi.org/10.3390/pharmaceutics14010059
Ortega-Quijano D, Jimenez-Cauhe J, Fernandez-Nieto D, Saceda-Corralo D, Vaño-Galvan S. Comment on “Low dose oral minoxidil for treating alopecia: A 3-year North American retrospective case series”: Adding further evidence about side effects. J Am Acad Dermatol. 2021;84(5):e237-e238. doi:10.1016/j.jaad.2020.12.041 DOI: https://doi.org/10.1016/j.jaad.2020.12.041
Li X, Ding Y, Lu W. Using Entity Metrics to Understand Drug Repurposing. AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2020;2020:377-382.
El-Rashid M, Nguyen-Ngo D, Minhas N, et al. Repurposing of metformin and colchicine reveals differential modulation of acute and chronic kidney injury. Sci Rep. 2020;10(1):21968. doi:10.1038/s41598-020-78936-5 DOI: https://doi.org/10.1038/s41598-020-78936-5
Jivan R, Peres J, Damelin LH, et al. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett. 2018;417:1-10. doi:10.1016/j.canlet.2017.12.026 DOI: https://doi.org/10.1016/j.canlet.2017.12.026
Li XT, Zhou ZY, Jiang Y, et al. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J Drug Target. 2015;23(3):232-243. doi:10.3109/1061186X.2014.979829 DOI: https://doi.org/10.3109/1061186X.2014.979829
Rizg WY, Hosny KM, Elgebaly SS, et al. Preparation and Optimization of Garlic Oil/Apple Cider Vinegar Nanoemulsion Loaded with Minoxidil to Treat Alopecia. Pharmaceutics. 2021;13(12):2150. doi:10.3390/pharmaceutics13122150 DOI: https://doi.org/10.3390/pharmaceutics13122150
Subedi L, Pandey P, Shim JH, et al. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv. 2022;29(1):328-341. doi:10.1080/10717544.2022.2027046 DOI: https://doi.org/10.1080/10717544.2022.2027046
Li X, Rousseau JF, Ding Y, Song M, Lu W. Understanding Drug Repurposing From the Perspective of Biomedical Entities and Their Evolution: Bibliographic Research Using Aspirin. JMIR Med Inform. 2020;8(6):e16739. doi:10.2196/16739 DOI: https://doi.org/10.2196/16739
Shukla R, Henkel ND, Alganem K, et al. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology. 2021;46(1):116-130. doi:10.1038/s41386-020-0752-6 DOI: https://doi.org/10.1038/s41386-020-0752-6
Li YY, An J, Jones SJM. A Computational Approach to Finding Novel Targets for Existing Drugs. Bourne PE, ed. PLoS Comput Biol. 2011;7(9):e1002139. doi:10.1371/journal.pcbi.1002139 DOI: https://doi.org/10.1371/journal.pcbi.1002139
Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem. 2021;21(4):416-427. doi:10.2174/1871520620666200721123046 DOI: https://doi.org/10.2174/1871520620666200721123046
Huyghe É. News in erectile dysfunction. Rev Prat. 2017;67(6):616-622.
Chen T, Zhou R, Chen Y, et al. Curcumin ameliorates IL‐1β‐induced apoptosis by activating autophagy and inhibiting the NF‐κB signaling pathway in rat primary articular chondrocytes. Cell Biol Int. 2021;45(5):976-988. doi:10.1002/cbin.11541 DOI: https://doi.org/10.1002/cbin.11541
Hernandez JJ, Pryszlak M, Smith L, et al. Giving Drugs a Second Chance: Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs As Cancer Therapeutics. Front Oncol. 2017;7:273. doi:10.3389/fonc.2017.00273 DOI: https://doi.org/10.3389/fonc.2017.00273
Shineman DW, Alam J, Anderson M, et al. Overcoming obstacles to repurposing for neurodegenerative disease. Ann Clin Transl Neurol. 2014;1(7):512-518. doi:10.1002/acn3.76 DOI: https://doi.org/10.1002/acn3.76
Fabbri A, Lai A, Grundy Q, Bero LA. The Influence of Industry Sponsorship on the Research Agenda: A Scoping Review. Am J Public Health. 2018;108(11):e9-e16. doi:10.2105/AJPH.2018.304677 DOI: https://doi.org/10.2105/AJPH.2018.304677
MohammadiPeyhani H, Chiappino-Pepe A, Haddadi K, Hafner J, Hadadi N, Hatzimanikatis V. NICEdrug.ch, a workflow for rational drug design and systems-level analysis of drug metabolism. eLife. 2021;10:e65543. doi:10.7554/eLife.65543 DOI: https://doi.org/10.7554/eLife.65543
Balon K, Sheriff A, Jacków J, Łaczmański Ł. Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci. 2022;23(1):573. doi:10.3390/ijms23010573 DOI: https://doi.org/10.3390/ijms23010573
Huang CY, Chen CH. Clinical characteristics and survival outcomes in patients with a high PSA and non-metastatic prostate cancer. J Formos Med Assoc. 2022;121(1):181-186. doi:10.1016/j.jfma.2021.02.015 DOI: https://doi.org/10.1016/j.jfma.2021.02.015
Manara M, Garofalo C, Ferrari S, Belfiore A, Scotlandi K. Designing Novel Therapies Against Sarcomas in the Era of Personalized Medicine and Economic Crisis. Curr Pharm Des. 2013;19(30):5344-5361. doi:10.2174/1381612811319300004 DOI: https://doi.org/10.2174/1381612811319300004
Cullum RL, Lucas LM, Senfeld JI, et al. Development and application of high-throughput screens for the discovery of compounds that disrupt ErbB4 signaling: Candidate cancer therapeutics. Kancha RK, ed. PLOS ONE. 2020;15(12):e0243901. doi:10.1371/journal.pone.0243901 DOI: https://doi.org/10.1371/journal.pone.0243901
Vanhaelen Q, Mamoshina P, Aliper AM, et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2017;22(2):210-222. doi:10.1016/j.drudis.2016.09.019 DOI: https://doi.org/10.1016/j.drudis.2016.09.019
Maruca A, Rocca R, Catalano R, et al. Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7. Molecules. 2020;25(23):5524. doi:10.3390/molecules25235524 DOI: https://doi.org/10.3390/molecules25235524
Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH. Thymoquinone Is a Potent Superoxide Anion Scavenger. Drug Chem Toxicol. 2003;26(2):87-98. doi:10.1081/DCT-120020404 DOI: https://doi.org/10.1081/DCT-120020404
Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: A promising anti-cancer drug from natural sources. Int J Biochem Cell Biol. 2006;38(8):1249-1253. doi:10.1016/j.biocel.2005.10.009 DOI: https://doi.org/10.1016/j.biocel.2005.10.009
Zhang Y, Fox JT, Park YU, et al. A Novel Chemotherapeutic Agent to Treat Tumors with DNA Mismatch Repair Deficiencies. Cancer Res. 2016;76(14):4183-4191. doi:10.1158/0008-5472.CAN-15-2974 DOI: https://doi.org/10.1158/0008-5472.CAN-15-2974
Brinkman JA, Liu Y, Kron SJ. Small-molecule drug repurposing to target DNA damage repair and response pathways. Semin Cancer Biol. 2021;68:230-241. doi:10.1016/j.semcancer.2020.02.013 DOI: https://doi.org/10.1016/j.semcancer.2020.02.013
Rosenzweig KE, Youmell MB, Palayoor ST, Price BD. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res Off J Am Assoc Cancer Res. 1997;3(7):1149-1156.
Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999;59(17):4375-4382.
Li G, Wang Z, Chong T, Yang J, Li H, Chen H. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother. 2017;94:974-981. doi:10.1016/j.biopha.2017.07.148 DOI: https://doi.org/10.1016/j.biopha.2017.07.148
Vazquez-Martin A, López-Bonetc E, Cufí S, et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat. 2011;14(4-5):212-223. doi:10.1016/j.drup.2011.04.003 DOI: https://doi.org/10.1016/j.drup.2011.04.003
Fidecicchi T, Fruzzetti F, Lete Lasa LI, Calaf J. COVID-19, gender and estroprogestins, what do we know? Eur J Contracept Reprod Health Care. 2022;27(1):67-74. doi:10.1080/13625187.2021.2000959 DOI: https://doi.org/10.1080/13625187.2021.2000959
Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Hydroxychloroquine in COVID-19 Patients: Pros and Cons. Front Pharmacol. 2020;11:597985. doi:10.3389/fphar.2020.597985 DOI: https://doi.org/10.3389/fphar.2020.597985
Omokhua-Uyi AG, Van Staden J. Natural product remedies for COVID-19: A focus on safety. South Afr J Bot. 2021;139:386-398. doi:10.1016/j.sajb.2021.03.012 DOI: https://doi.org/10.1016/j.sajb.2021.03.012
Alanazi KM, Farah MA, Hor YY. Multi-Targeted Approaches and Drug Repurposing Reveal Possible SARS-CoV-2 Inhibitors. Vaccines. 2021;10(1):24. doi:10.3390/vaccines10010024 DOI: https://doi.org/10.3390/vaccines10010024
Mohanty S, Harun AI Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr Clin Res Rev. 2020;14(5):1027-1031. doi:10.1016/j.dsx.2020.06.068 DOI: https://doi.org/10.1016/j.dsx.2020.06.068
Hacisuleyman E, Hale C, Saito Y, et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N Engl J Med. 2021;384(23):2212-2218. doi:10.1056/NEJMoa2105000 DOI: https://doi.org/10.1056/NEJMoa2105000
Massaquoi MBF, Kennedy SB. Evaluation of chloroquine as a potent anti-malarial drug: issues of public health policy and healthcare delivery in post-war Liberia. J Eval Clin Pract. 2003;9(1):83-87. doi:10.1046/j.1365-2753.2003.00391.x DOI: https://doi.org/10.1046/j.1365-2753.2003.00391.x
Shi K, Chen X, Xie B, et al. Celastrol Alleviates Chronic Obstructive Pulmonary Disease by Inhibiting Cellular Inflammation Induced by Cigarette Smoke via the Ednrb/Kng1 Signaling Pathway. Front Pharmacol. 2018;9:1276. doi:10.3389/fphar.2018.01276 DOI: https://doi.org/10.3389/fphar.2018.01276
Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. doi:10.1016/j.virusres.2020.197989 DOI: https://doi.org/10.1016/j.virusres.2020.197989
Wang Z, Yang L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front Pharmacol. 2020;11:1013. doi:10.3389/fphar.2020.01013 DOI: https://doi.org/10.3389/fphar.2020.01013
Puttaswamy H, Gowtham HG, Ojha MD, et al. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci Rep. 2020;10(1):20584. doi:10.1038/s41598-020-77602-0 DOI: https://doi.org/10.1038/s41598-020-77602-0
Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12(4):346-356. doi:10.1093/bib/bbr021 DOI: https://doi.org/10.1093/bib/bbr021
Lotfi Shahreza M, Ghadiri N, Green JR. A computational drug repositioning method applied to rare diseases: Adrenocortical carcinoma. Sci Rep. 2020;10(1):8846. doi:10.1038/s41598-020-65658-x DOI: https://doi.org/10.1038/s41598-020-65658-x
Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract. Published online January 12, 2022:107815522110736. doi:10.1177/10781552211073673 DOI: https://doi.org/10.1177/10781552211073673
Lee L, Ito T, Jensen RT. Everolimus in the treatment of neuroendocrine tumors: efficacy, side-effects, resistance, and factors affecting its place in the treatment sequence. Expert Opin Pharmacother. 2018;19(8):909-928. doi:10.1080/14656566.2018.1476492 DOI: https://doi.org/10.1080/14656566.2018.1476492
Wu F, McGarrey MP, Geenen KR, et al. Treatment of Aggressive Retinal Astrocytic Hamartoma with Oral mTOR Inhibition. Ophthalmol Retina. Published online January 2022:S2468653022000100. doi:10.1016/j.oret.2022.01.003 DOI: https://doi.org/10.1016/j.oret.2022.01.003
Dhulipudi B, Bhakru S, Rajan S, Doraiswamy V, Koneti NR. Symptomatic improvement using everolimus in infants with cardiac rhabdomyoma. Ann Pediatr Cardiol. 2019;12(1):45-48. doi:10.4103/apc.APC_79_18 DOI: https://doi.org/10.4103/apc.APC_79_18
Ando K, Takahashi F, Kato M, et al. Tocilizumab, a Proposed Therapy for the Cachexia of Interleukin6-Expressing Lung Cancer. Rota R, ed. PLoS ONE. 2014;9(7):e102436. doi:10.1371/journal.pone.0102436 DOI: https://doi.org/10.1371/journal.pone.0102436
Alraouji NN, Aboussekhra A. Tocilizumab inhibits IL‐8 and the proangiogenic potential of triple negative breast cancer cells. Mol Carcinog. 2021;60(1):51-59. doi:10.1002/mc.23270 DOI: https://doi.org/10.1002/mc.23270
Hirata H, Tetsumoto S, Kijima T, et al. Favorable Responses to Tocilizumab in Two Patients With Cancer-Related Cachexia. J Pain Symptom Manage. 2013;46(2):e9-e13. doi:10.1016/j.jpainsymman.2013.01.009 DOI: https://doi.org/10.1016/j.jpainsymman.2013.01.009
Di Lorenzo G, Di Trolio R, Kozlakidis Z, et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit Rev Oncol Hematol. 2020;152:102991. doi:10.1016/j.critrevonc.2020.102991
Heo TH, Wahler J, Suh N. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer. Oncotarget. 2016;7(13):15460-15473. doi:10.18632/oncotarget.7102 DOI: https://doi.org/10.18632/oncotarget.7102
Di Lorenzo G, Di Trolio R, Kozlakidis Z, et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit Rev Oncol Hematol. 2020;152:102991. doi:10.1016/j.critrevonc.2020.102991 DOI: https://doi.org/10.1016/j.critrevonc.2020.102991
Lubberink M, Golla SSV, Jonasson M, et al. 15 O-Water PET Study of the Effect of Imatinib, a Selective Platelet-Derived Growth Factor Receptor Inhibitor, Versus Anakinra, an IL-1R Antagonist, on Water-Perfusable Tissue Fraction in Colorectal Cancer Metastases. J Nucl Med. 2015;56(8):1144-1149. doi:10.2967/jnumed.114.151894 DOI: https://doi.org/10.2967/jnumed.114.151894
Holmes FA, Levin MK, Cao Y, et al. Comutation of PIK3CA and TP53 in Residual Disease After Preoperative Anti-HER2 Therapy in ERBB2 (HER2)-Amplified Early Breast Cancer. JCO Precis Oncol. 2019;(3):1-26. doi:10.1200/PO.18.00292 DOI: https://doi.org/10.1200/PO.18.00292
Voigt C, May P, Gottschlich A, et al. Cancer cells induce interleukin-22 production from memory CD4 + T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci. 2017;114(49):12994-12999. doi:10.1073/pnas.1705165114 DOI: https://doi.org/10.1073/pnas.1705165114
Becerra C, Paulson AS, Cavaness KM, Celinski SA. Gemcitabine, nab-paclitaxel, cisplatin, and anakinra (AGAP) treatment in patients with localized pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2018;36(4_suppl):449-449. doi:10.1200/JCO.2018.36.4_suppl.449 DOI: https://doi.org/10.1200/JCO.2018.36.4_suppl.449
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi:10.1016/j.ijantimicag.2020.105949 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105949
Nhean S, Bravo J, Sheehan NL, Walmsley S, Tilley D, Tseng AL. Successful use of the potent enzyme inducer enzalutamide in a treatment-experienced HIV-positive male with prostate cancer. AIDS. 2018;32(17):2640-2642. doi:10.1097/QAD.0000000000002019 DOI: https://doi.org/10.1097/QAD.0000000000002019
Bakouny Z, Braun DA, Shukla SA, et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat Commun. 2021;12(1):808. doi:10.1038/s41467-021-21068-9 DOI: https://doi.org/10.1038/s41467-021-21068-9
Hong Y, Flinkman D, Suomi T, et al. PhosPiR: an automated phosphoproteomic pipeline in R. Brief Bioinform. 2022;23(1):bbab510. doi:10.1093/bib/bbab510 DOI: https://doi.org/10.1093/bib/bbab510
Tan W, Weng H, Lin H, Ou A, He Z, Jia F. Disease risk analysis for schizophrenia patients by an automatic AHP framework. BMC Med Inform Decis Mak. 2021;21(S9):375. doi:10.1186/s12911-022-01749-1 DOI: https://doi.org/10.1186/s12911-022-01749-1
Jerjen R, Koh W ‐L., Sinclair R, Bhoyrul B. Low‐dose oral minoxidil improves global hair density and length in children with loose anagen hair syndrome. Br J Dermatol. 2021;184(5):977-978. doi:10.1111/bjd.19756 DOI: https://doi.org/10.1111/bjd.19756
Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2021;26(5):1256-1264. doi:10.1016/j.drudis.2020.12.013 DOI: https://doi.org/10.1016/j.drudis.2020.12.013
Juárez-López D, Schcolnik-Cabrera A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch Med Res. 2021;52(3):243-251. doi:10.1016/j.arcmed.2020.10.021 DOI: https://doi.org/10.1016/j.arcmed.2020.10.021
Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci. 2013;34(5):267-272. doi:10.1016/j.tips.2013.03.004 DOI: https://doi.org/10.1016/j.tips.2013.03.004
Krieger J, Li D, Papanikolaou D. Missing Novelty in Drug Development. Koijen R, ed. Rev Financ Stud. 2022;35(2):636-679. doi:10.1093/rfs/hhab024 DOI: https://doi.org/10.1093/rfs/hhab024
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Bharti Sharma, Dinesh Kumar Yadav
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author(s) hold complete right on the content of this article. Copyright to the content are governed as per Copyright Policy of the Journal.