A systematic review on Drug Re-profiling/Re-Purposing

Authors

  • Bharti Sharma St. John's University
  • Dinesh Kumar Yadav Shree Guru Gobind Singh Tricentenary University

DOI:

https://doi.org/10.51611/iars.irj.v12i02.2022.218

Keywords:

Drug Repurposing, Medicine Strategies, COVID-19, Cancer, Orphan Diseases, General Medicine

Abstract

Hardcore capability of drug repurposing has allowed rising population of diversified diseased patients to approach various medications with known safety profiles. In an ongoing scenario considering current pharmaceutical market, we have numerous drugs that are approved and repurposed by the U.S. Food and Drug Administration. Developing and bringing a novel drug molecule from the laboratory to a market requires a lot of investment in terms of money, efforts, and time. On the other hand, repurposing a drug holds the capability of bringing out best cures with harmless, ease availability and inexpensive quality. Sildenafil, Chloroquine, Metformin are some examples of repurposed drug used in multiple disease models. Despite numerous challenges, drug repurposing stood to be a core component to any comprehensive drug re-discovering strategies which has been planned to bring benefit to the patients suffering from a wide variety of dreadful ailments. In this review, we have discussed the various repurposed drugs in numerous types of cancer, deadly novel coronavirus (SARS-CoV-2) and some orphan diseases. This paper holds various examples of drugs which are still under clinical trial and have high chances of being approved as repurposed drugs benefitting humankind.

Downloads

Download data is not yet available.

References

Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011;12(4):357-368. doi:10.1093/bib/bbr005

Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies: Drug repurposing in pharmaceutical companies. Br J Pharmacol. 2018;175(2):168-180. doi:10.1111/bph.13798

Sangkum P, Sirisopana K, Matang W, et al. Efficacy of the Orally Disintegrating Strip Sildenafil for the Treatment of Erectile Dysfunction: A Prospective, Randomized Trial. Sex Med. 2021;9(6):100453. doi:10.1016/j.esxm.2021.100453

von Büren M, Rodler S, Wiesenhütter I, et al. Digital Real-world Data Suggest Patient Preference for Tadalafil over Sildenafil in Patients with Erectile Dysfunction. Eur Urol Focus. Published online May 2021:S2405456921001255. doi:10.1016/j.euf.2021.04.019

Upputuri B, Pallapati MS, Tarwater P, Srikantam A. Thalidomide in the treatment of erythema nodosum leprosum (ENL) in an outpatient setting: A five-year retrospective analysis from a leprosy referral centre in India. Adams LB, ed. PLoS Negl Trop Dis. 2020;14(10):e0008678. doi:10.1371/journal.pntd.0008678

Issa N, Byers S, Dakshanamurthy S. Drug Repurposing: Translational Pharmacology, Chemistry, Computers and the Clinic. Curr Top Med Chem. 2013;13(18):2328-2336. doi:10.2174/15680266113136660163

Kuo YC, Wang IH, Rajesh R. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson’s disease therapy. Acta Biomater. 2021;119:360-374. doi:10.1016/j.actbio.2020.11.015

Isoardi KZ, Parker LE, Page CB, et al. K ETAMINE AS a RESCUE TREATMENT FOR SEVERE ACUTE BEHAVIOURAL DISTURBANCE : A prospective prehospital study. Emerg Med Australas. 2021;33(4):610-614. doi:10.1111/1742-6723.13682

Yacouba A, Olowo-okere A, Yunusa I. Repurposing of antibiotics for clinical management of COVID-19: a narrative review. Ann Clin Microbiol Antimicrob. 2021;20(1):37. doi:10.1186/s12941-021-00444-9

Schcolnik-Cabrera A, Juárez-López D, Duenas-Gonzalez A. Perspectives on Drug Repurposing. Curr Med Chem. 2021;28(11):2085-2099. doi:10.2174/0929867327666200831141337

Alnajjar R, Mostafa A, Kandeil A, Al-Karmalawy AA. Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon. 2020;6(12):e05641. doi:10.1016/j.heliyon.2020.e05641

Haslam B, Perez-Breva L. Learning disease relationships from clinical drug trials. J Am Med Inform Assoc. 2017;24(1):13-23. doi:10.1093/jamia/ocw003

Panchapakesan U, Pollock C. Drug repurposing in kidney disease. Kidney Int. 2018;94(1):40-48. doi:10.1016/j.kint.2017.12.026

Marouf BH, Dizaye K. Re-tasking the use of pre-existing medications and potential therapeutic options for coronavirus disease (COVID-19): systematic review of clinical studies. Drug Discov Ther. 2020;14(3):109-116. doi:10.5582/ddt.2020.03035

Jain P, Jain SK, Jain M. Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Curr Mol Med. 2021;21(2):111-132. doi:10.2174/1566524020666200619125404

Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J Pharm Sci. 2020;6(1):27. doi:10.1186/s43094-020-00047-9

Usha T, Middha SK, Kukanur AA, et al. Drug Repurposing Approaches: Existing Leads for Novel Threats and Drug Targets. Curr Protein Pept Sci. 2021;22(3):251-271. doi:10.2174/1389203721666200921152853

Gns HS, Gr S, Murahari M, Krishnamurthy M. An update on Drug Repurposing: Re-written saga of the drug’s fate. Biomed Pharmacother. 2019;110:700-716. doi:10.1016/j.biopha.2018.11.127

Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS, Enger PØ. Drug repurposing in cancer. Pharmacol Res. 2017;124:74-91. doi:10.1016/j.phrs.2017.07.013

Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479-1508. doi:10.1007/s43440-020-00155-6

Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci. 2021;42(4):255-267. doi:10.1016/j.tips.2021.01.003

Anighoro A, Bajorath J, Rastelli G. Polypharmacology: Challenges and Opportunities in Drug Discovery: Miniperspective. J Med Chem. 2014;57(19):7874-7887. doi:10.1021/jm5006463

Thatai P, Tiwary AK, Sapra B. Progressive development in experimental models of transungual drug delivery of anti-fungal agents. Int J Cosmet Sci. 2016;38(1):1-12. doi:10.1111/ics.12230

De Prá MAA, Vardanega R, Loss CG. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int J Pharm. 2021;609:121159. doi:10.1016/j.ijpharm.2021.121159

Grassi G, Grassi M. Drug Repurposing in Human Cancers. Curr Med Chem. 2020;27(42):7213-7213. doi:10.2174/092986732742201105104417

Beach RA, McDonald KA, Barrett BM, Abdel-Qadir H. Side effects of low-dose oral minoxidil for treating alopecia. J Am Acad Dermatol. 2021;84(5):e239-e240. doi:10.1016/j.jaad.2020.12.038

Ngidi NTP, Machaba KE, Mhlongo NN. In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. Molecules. 2022;27(3):668. doi:10.3390/molecules27030668

Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020;323(9):844. doi:10.1001/jama.2020.1166

Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58. doi:10.1038/nrd.2018.168

Wilkinson GF, Pritchard K. In Vitro Screening for Drug Repositioning. J Biomol Screen. 2015;20(2):167-179. doi:10.1177/1087057114563024

Jiao M, Liu G, Xue Y, Ding C. Computational Drug Repositioning for Cancer Therapeutics. Curr Top Med Chem. 2015;15(8):767-775. doi:10.2174/1568026615666150302105831

Thirunavukkarasu MK, Suriya U, Rungrotmongkol T, Karuppasamy R. In Silico Screening of Available Drugs Targeting Non-Small Cell Lung Cancer Targets: A Drug Repurposing Approach. Pharmaceutics. 2021;14(1):59. doi:10.3390/pharmaceutics14010059

Ortega-Quijano D, Jimenez-Cauhe J, Fernandez-Nieto D, Saceda-Corralo D, Vaño-Galvan S. Comment on “Low dose oral minoxidil for treating alopecia: A 3-year North American retrospective case series”: Adding further evidence about side effects. J Am Acad Dermatol. 2021;84(5):e237-e238. doi:10.1016/j.jaad.2020.12.041

Li X, Ding Y, Lu W. Using Entity Metrics to Understand Drug Repurposing. AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2020;2020:377-382.

El-Rashid M, Nguyen-Ngo D, Minhas N, et al. Repurposing of metformin and colchicine reveals differential modulation of acute and chronic kidney injury. Sci Rep. 2020;10(1):21968. doi:10.1038/s41598-020-78936-5

Jivan R, Peres J, Damelin LH, et al. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett. 2018;417:1-10. doi:10.1016/j.canlet.2017.12.026

Li XT, Zhou ZY, Jiang Y, et al. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J Drug Target. 2015;23(3):232-243. doi:10.3109/1061186X.2014.979829

Rizg WY, Hosny KM, Elgebaly SS, et al. Preparation and Optimization of Garlic Oil/Apple Cider Vinegar Nanoemulsion Loaded with Minoxidil to Treat Alopecia. Pharmaceutics. 2021;13(12):2150. doi:10.3390/pharmaceutics13122150

Subedi L, Pandey P, Shim JH, et al. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv. 2022;29(1):328-341. doi:10.1080/10717544.2022.2027046

Li X, Rousseau JF, Ding Y, Song M, Lu W. Understanding Drug Repurposing From the Perspective of Biomedical Entities and Their Evolution: Bibliographic Research Using Aspirin. JMIR Med Inform. 2020;8(6):e16739. doi:10.2196/16739

Shukla R, Henkel ND, Alganem K, et al. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology. 2021;46(1):116-130. doi:10.1038/s41386-020-0752-6

Li YY, An J, Jones SJM. A Computational Approach to Finding Novel Targets for Existing Drugs. Bourne PE, ed. PLoS Comput Biol. 2011;7(9):e1002139. doi:10.1371/journal.pcbi.1002139

Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem. 2021;21(4):416-427. doi:10.2174/1871520620666200721123046

Huyghe É. News in erectile dysfunction. Rev Prat. 2017;67(6):616-622.

Chen T, Zhou R, Chen Y, et al. Curcumin ameliorates IL‐1β‐induced apoptosis by activating autophagy and inhibiting the NF‐κB signaling pathway in rat primary articular chondrocytes. Cell Biol Int. 2021;45(5):976-988. doi:10.1002/cbin.11541

Hernandez JJ, Pryszlak M, Smith L, et al. Giving Drugs a Second Chance: Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs As Cancer Therapeutics. Front Oncol. 2017;7:273. doi:10.3389/fonc.2017.00273

Shineman DW, Alam J, Anderson M, et al. Overcoming obstacles to repurposing for neurodegenerative disease. Ann Clin Transl Neurol. 2014;1(7):512-518. doi:10.1002/acn3.76

Fabbri A, Lai A, Grundy Q, Bero LA. The Influence of Industry Sponsorship on the Research Agenda: A Scoping Review. Am J Public Health. 2018;108(11):e9-e16. doi:10.2105/AJPH.2018.304677

MohammadiPeyhani H, Chiappino-Pepe A, Haddadi K, Hafner J, Hadadi N, Hatzimanikatis V. NICEdrug.ch, a workflow for rational drug design and systems-level analysis of drug metabolism. eLife. 2021;10:e65543. doi:10.7554/eLife.65543

Balon K, Sheriff A, Jacków J, Łaczmański Ł. Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci. 2022;23(1):573. doi:10.3390/ijms23010573

Huang CY, Chen CH. Clinical characteristics and survival outcomes in patients with a high PSA and non-metastatic prostate cancer. J Formos Med Assoc. 2022;121(1):181-186. doi:10.1016/j.jfma.2021.02.015

Manara M, Garofalo C, Ferrari S, Belfiore A, Scotlandi K. Designing Novel Therapies Against Sarcomas in the Era of Personalized Medicine and Economic Crisis. Curr Pharm Des. 2013;19(30):5344-5361. doi:10.2174/1381612811319300004

Cullum RL, Lucas LM, Senfeld JI, et al. Development and application of high-throughput screens for the discovery of compounds that disrupt ErbB4 signaling: Candidate cancer therapeutics. Kancha RK, ed. PLOS ONE. 2020;15(12):e0243901. doi:10.1371/journal.pone.0243901

Vanhaelen Q, Mamoshina P, Aliper AM, et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2017;22(2):210-222. doi:10.1016/j.drudis.2016.09.019

Maruca A, Rocca R, Catalano R, et al. Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7. Molecules. 2020;25(23):5524. doi:10.3390/molecules25235524

Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH. Thymoquinone Is a Potent Superoxide Anion Scavenger. Drug Chem Toxicol. 2003;26(2):87-98. doi:10.1081/DCT-120020404

Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: A promising anti-cancer drug from natural sources. Int J Biochem Cell Biol. 2006;38(8):1249-1253. doi:10.1016/j.biocel.2005.10.009

Zhang Y, Fox JT, Park YU, et al. A Novel Chemotherapeutic Agent to Treat Tumors with DNA Mismatch Repair Deficiencies. Cancer Res. 2016;76(14):4183-4191. doi:10.1158/0008-5472.CAN-15-2974

Brinkman JA, Liu Y, Kron SJ. Small-molecule drug repurposing to target DNA damage repair and response pathways. Semin Cancer Biol. 2021;68:230-241. doi:10.1016/j.semcancer.2020.02.013

Rosenzweig KE, Youmell MB, Palayoor ST, Price BD. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res Off J Am Assoc Cancer Res. 1997;3(7):1149-1156.

Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999;59(17):4375-4382.

Li G, Wang Z, Chong T, Yang J, Li H, Chen H. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother. 2017;94:974-981. doi:10.1016/j.biopha.2017.07.148

Vazquez-Martin A, López-Bonetc E, Cufí S, et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat. 2011;14(4-5):212-223. doi:10.1016/j.drup.2011.04.003

Fidecicchi T, Fruzzetti F, Lete Lasa LI, Calaf J. COVID-19, gender and estroprogestins, what do we know? Eur J Contracept Reprod Health Care. 2022;27(1):67-74. doi:10.1080/13625187.2021.2000959

Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Hydroxychloroquine in COVID-19 Patients: Pros and Cons. Front Pharmacol. 2020;11:597985. doi:10.3389/fphar.2020.597985

Omokhua-Uyi AG, Van Staden J. Natural product remedies for COVID-19: A focus on safety. South Afr J Bot. 2021;139:386-398. doi:10.1016/j.sajb.2021.03.012

Alanazi KM, Farah MA, Hor YY. Multi-Targeted Approaches and Drug Repurposing Reveal Possible SARS-CoV-2 Inhibitors. Vaccines. 2021;10(1):24. doi:10.3390/vaccines10010024

Mohanty S, Harun AI Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr Clin Res Rev. 2020;14(5):1027-1031. doi:10.1016/j.dsx.2020.06.068

Hacisuleyman E, Hale C, Saito Y, et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N Engl J Med. 2021;384(23):2212-2218. doi:10.1056/NEJMoa2105000

Massaquoi MBF, Kennedy SB. Evaluation of chloroquine as a potent anti-malarial drug: issues of public health policy and healthcare delivery in post-war Liberia. J Eval Clin Pract. 2003;9(1):83-87. doi:10.1046/j.1365-2753.2003.00391.x

Shi K, Chen X, Xie B, et al. Celastrol Alleviates Chronic Obstructive Pulmonary Disease by Inhibiting Cellular Inflammation Induced by Cigarette Smoke via the Ednrb/Kng1 Signaling Pathway. Front Pharmacol. 2018;9:1276. doi:10.3389/fphar.2018.01276

Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. doi:10.1016/j.virusres.2020.197989

Wang Z, Yang L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front Pharmacol. 2020;11:1013. doi:10.3389/fphar.2020.01013

Puttaswamy H, Gowtham HG, Ojha MD, et al. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci Rep. 2020;10(1):20584. doi:10.1038/s41598-020-77602-0

Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12(4):346-356. doi:10.1093/bib/bbr021

Lotfi Shahreza M, Ghadiri N, Green JR. A computational drug repositioning method applied to rare diseases: Adrenocortical carcinoma. Sci Rep. 2020;10(1):8846. doi:10.1038/s41598-020-65658-x

Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract. Published online January 12, 2022:107815522110736. doi:10.1177/10781552211073673

Lee L, Ito T, Jensen RT. Everolimus in the treatment of neuroendocrine tumors: efficacy, side-effects, resistance, and factors affecting its place in the treatment sequence. Expert Opin Pharmacother. 2018;19(8):909-928. doi:10.1080/14656566.2018.1476492

Wu F, McGarrey MP, Geenen KR, et al. Treatment of Aggressive Retinal Astrocytic Hamartoma with Oral mTOR Inhibition. Ophthalmol Retina. Published online January 2022:S2468653022000100. doi:10.1016/j.oret.2022.01.003

Dhulipudi B, Bhakru S, Rajan S, Doraiswamy V, Koneti NR. Symptomatic improvement using everolimus in infants with cardiac rhabdomyoma. Ann Pediatr Cardiol. 2019;12(1):45-48. doi:10.4103/apc.APC_79_18

Ando K, Takahashi F, Kato M, et al. Tocilizumab, a Proposed Therapy for the Cachexia of Interleukin6-Expressing Lung Cancer. Rota R, ed. PLoS ONE. 2014;9(7):e102436. doi:10.1371/journal.pone.0102436

Alraouji NN, Aboussekhra A. Tocilizumab inhibits IL‐8 and the proangiogenic potential of triple negative breast cancer cells. Mol Carcinog. 2021;60(1):51-59. doi:10.1002/mc.23270

Hirata H, Tetsumoto S, Kijima T, et al. Favorable Responses to Tocilizumab in Two Patients With Cancer-Related Cachexia. J Pain Symptom Manage. 2013;46(2):e9-e13. doi:10.1016/j.jpainsymman.2013.01.009

Di Lorenzo G, Di Trolio R, Kozlakidis Z, et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit Rev Oncol Hematol. 2020;152:102991. doi:10.1016/j.critrevonc.2020.102991

Heo TH, Wahler J, Suh N. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer. Oncotarget. 2016;7(13):15460-15473. doi:10.18632/oncotarget.7102

Di Lorenzo G, Di Trolio R, Kozlakidis Z, et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit Rev Oncol Hematol. 2020;152:102991. doi:10.1016/j.critrevonc.2020.102991

Lubberink M, Golla SSV, Jonasson M, et al. 15 O-Water PET Study of the Effect of Imatinib, a Selective Platelet-Derived Growth Factor Receptor Inhibitor, Versus Anakinra, an IL-1R Antagonist, on Water-Perfusable Tissue Fraction in Colorectal Cancer Metastases. J Nucl Med. 2015;56(8):1144-1149. doi:10.2967/jnumed.114.151894

Holmes FA, Levin MK, Cao Y, et al. Comutation of PIK3CA and TP53 in Residual Disease After Preoperative Anti-HER2 Therapy in ERBB2 (HER2)-Amplified Early Breast Cancer. JCO Precis Oncol. 2019;(3):1-26. doi:10.1200/PO.18.00292

Voigt C, May P, Gottschlich A, et al. Cancer cells induce interleukin-22 production from memory CD4 + T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci. 2017;114(49):12994-12999. doi:10.1073/pnas.1705165114

Becerra C, Paulson AS, Cavaness KM, Celinski SA. Gemcitabine, nab-paclitaxel, cisplatin, and anakinra (AGAP) treatment in patients with localized pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2018;36(4_suppl):449-449. doi:10.1200/JCO.2018.36.4_suppl.449

Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi:10.1016/j.ijantimicag.2020.105949

Nhean S, Bravo J, Sheehan NL, Walmsley S, Tilley D, Tseng AL. Successful use of the potent enzyme inducer enzalutamide in a treatment-experienced HIV-positive male with prostate cancer. AIDS. 2018;32(17):2640-2642. doi:10.1097/QAD.0000000000002019

Bakouny Z, Braun DA, Shukla SA, et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat Commun. 2021;12(1):808. doi:10.1038/s41467-021-21068-9

Hong Y, Flinkman D, Suomi T, et al. PhosPiR: an automated phosphoproteomic pipeline in R. Brief Bioinform. 2022;23(1):bbab510. doi:10.1093/bib/bbab510

Tan W, Weng H, Lin H, Ou A, He Z, Jia F. Disease risk analysis for schizophrenia patients by an automatic AHP framework. BMC Med Inform Decis Mak. 2021;21(S9):375. doi:10.1186/s12911-022-01749-1

Jerjen R, Koh W ‐L., Sinclair R, Bhoyrul B. Low‐dose oral minoxidil improves global hair density and length in children with loose anagen hair syndrome. Br J Dermatol. 2021;184(5):977-978. doi:10.1111/bjd.19756

Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2021;26(5):1256-1264. doi:10.1016/j.drudis.2020.12.013

Juárez-López D, Schcolnik-Cabrera A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch Med Res. 2021;52(3):243-251. doi:10.1016/j.arcmed.2020.10.021

Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci. 2013;34(5):267-272. doi:10.1016/j.tips.2013.03.004

Krieger J, Li D, Papanikolaou D. Missing Novelty in Drug Development. Koijen R, ed. Rev Financ Stud. 2022;35(2):636-679. doi:10.1093/rfs/hhab024

Crossref Crossmark

Published

2022-08-29

Issue

Section

Peer Reviewed Research Manuscript

How to Cite

“A systematic review on Drug Re-profiling/Re-Purposing” (2022) IARS’ International Research Journal, 12(02). doi:10.51611/iars.irj.v12i02.2022.218.

Citations

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.