A Study on Biologically Active Chalcone Based Benzodiazepines

Authors

  • Anirudh Singh Shree Guru Gobind Singh Tricentenary University
  • Anjaneyulu Bendi Shree Guru Gobind Singh Tricentenary University
  • Aditi Tiwari Shree Guru Gobind Singh Tricentenary University

DOI:

https://doi.org/10.51611/iars.irj.v12i02.2022.216

Keywords:

Benzodiazepines, Chalcones, Heterocycles, Pharmaceuticals

Abstract

Heterocycles that include nitrogen are now indispensable to humanity. The majority of the major pharmaceuticals on the market are composed of heterocycles that include nitrogen. One such substance is benzodiazepine, which was shown to have potential as an anti-anxiety medication in 1955. A novel class of chalcone-based benzodiazepines continues to receive the most attention because of their enhanced pharmacological, medicinal, and biological actions. The present study covers the chemistry of some important biologically active chalcone-based benzodiazepines.

Downloads

Download data is not yet available.

References

Archer G. A, Sternbach, L. H. Chem. Rev. 1968, 68, 6, 747-784.

Mehdi T, Benzodiazepines Revisited. BJMP. 2012; 5(1):a501

Wick JY, The History of Benzodiazepines. The consultant pharmacist. 2013; 28(9):538-548

Tardibono, L. P.; Miller, Synthesis and Anticancer Activity of New Hydroxamic Acid Containing 1,4-Benzodiazepines. M. J. Org. Lett. 2009;11(4):1575-1578

Chen Y, Le V, Xu, X, Shao X, Liu J, Li Z. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett. 2014; 24(16): 3948- 3951.

Misra A, Sharma S, Sharma D, Dubey S, Mishra A, Kishore D, Dwivedi J. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J. Chem. Sci. 2018;130(1):1-12.

Kumar R, Joshi YC. Synthesis and antimicrobial, antifungal and anthelmintic activities of 3H-1,5-benzodiazepine derivatives. J. Serb. Chem. Soc. 2008; 73(10): 937-943.

Torres S. R, Frode T. S, Nardi, G.M, Vita N, Reeb R, Ferrara P, Ribeiro-do-Valle R. M, Farges R. C. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation. Eur. J. Pharmacol. 2000; 408 (2):199-211.

Torres S. R. R, Nardi G. M, Ferrara, P, Ribeiro-do-Valle R. M, Farges R. C. Potential role of peripheral benzodiazepine receptors in inflammatory response Eur. J. Pharmacol. 1999; 385: R1- R2.

Kamal A, Reddy K. L, Devaiah V, Shankaraiah N, Reddy G. S. K, Raghavan S. Solid-Phase Synthesis of a Library of Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones with Potential Antitubercular Activity J. Comb. Chem 2007; 9(1): 29-42.

De Sarro G, Ferreri G, Gareri, P.; Russo, E.; De Sarro, A.; Gitto, R.; Chimirri, A. Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacol. Biochem. Behav. 2003; 74 (3): 595-602.

Grasso S, De Sarro G, De Sarro A, Micale N, Zappala M, Puia G, Baraldi M, De Micheli C. Synthesis and Anticonvulsant Activity of Novel and Potent 2,3-Benzodiazepine AMPA/Kainate Receptor Antagonists. J. Med. Chem. 1999; 42 (21): 4414-4421.

Rathore M. M, Rajput P. R, Parhate V. V Synthesis and Antimicrobial Activity of Some Chalcones and Flavones. Int. J. Chem. Phys. Sci. 2015; 4: 473-477.

Lin Y. M, Zhou Y, Flavin M. T, Zhou L. M, Nie W, Chen F. C. Chalcones and Flavonoids as Anti-Tuberculosis Agents. Bioorganic Med. Chem. 2002; 10 (8): 2795-2802.

Alarcón J, Alderete J, Escobar C, Araya R, Cespedes C. L. Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatal. Biotransformation 2013; 31 (4): 160-167.

Balasubramanian S, Nair M. G. An Efficient “One Pot” Synthesis of Isoflavones. Synth. Commun. 2000; 30 (3): 469-484.

Li Y, Sun B, Zhai J, Fu L, Zhang S, Zhang J, Liu H, Xie W, Deng H, Chen Z, Sang F. Synthesis and antibacterial activity of four natural chalcones and their derivatives Tetrahedron Lett. 2019; 60 (43): 151165-151167.

Arty I. S, Timmerman H, Samhoedi M, Sastrohamidjojo, Sugiyanto, Van Der Goot H. Synthesis of benzylideneacetophenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem. 2000; 35( 4): 449-457.

Singh A, Viljoen A, Kremer L, Kumar V. Synthesis and Antimycobacterial Evaluation of Piperazyl-alkyl-Ether Linked 7-Chloroquinoline-Chalcone/Ferrocenyl Chalcone Conjugates .Chemistry Select. 2018; 3 (29): 8511-8513.

Shibata S. Anti-tumorigenic Chalcones. Stem Cells 1994; 12 (1): 44-52.

Go M, Wu X, Liu X. Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Curr. Med. Chem. 2005; 12 (4): 483-499.

Orlov V.D, Kolos, N. N, Yaremenko F. G, Lavrushin V. F. New aspects of the chemistry of 2,3-dihydro-ih-i,5- benzodiazepine. Chem. Heterocycl. Compd. 1980; 16 (5): 547-550.

Farooq S, Ngaini Z. One-Pot and Two-Pot Synthesis of Chalcone based Mono and Bis-Pyrazolines. Tetrahedron Lett. 2020; 61 (4): 151416.

Joshi V. D, Kshirsagar M. D, Singhal S. Synthesis and Antimicrobial activities of Various Pyrazolines from Chalcones. Int. J. ChemTech Res. 2012; 4(3): 971-975.

Sunitha V, Kumar A. K, Mahesh M, Shankaraiah P, Jalapathi P, Lincoln C. A. Synthesis and Antimicrobial Evaluation of Bis-3,5-disubstituted Isoxazoles Based Chalcones. Russ. J. Gen. Chem. 2018; 88 (9): 1904-1911.

Roy R. S, Chundawat J. S, Dulawat S. S. Microwave assisted synthesis of 2,4-diaryl-2,3- dihydro-1H-1,5-benzodiazepines on solventless inorganic solid support and their antibacterial activities. Afinidad 2008; 65 (537): 404--409.

Bhatia M. S, houdhari P. B, Ingale K. B, Zarekar, B. E. Synthesis, screening and QSAR studies of 2,4-disubstituted 1,5-benzodiazepine derivatives. Orient. J. Chem. 2008; 24 (1): 147-152.

Kamal A, Balakishan G, Ramakrishna G, Basha Shaik T, Sreekanth K, Balakrishna M, Rajender, Dastagiri D, Kalivendi S. V. Synthesis and biological evaluation of cinnamido linked pyrrolo[2,1-c][1,4] benzodiazepines as antimitotic agents. Eur. J. Med. Chem. 2010; 45(9): 3870-3884.

Hussain N, Dangi R, Talesara G. L. Synthesis and biological evaluation of some N-ethoxyphthalimido-4-phenyl-6- subsituted phenyl-2,3a,4,5-tetrahydro-3H-indazol-3-one via Robinson annulations reaction. Iran. J. Org. Chem. 2011; 3 (1): 563-572.

Yadav J. S, Srivastava Y. K. Microwave assisted rapid and efficient synthesis, characterization and pharmacological evaluation of some novel benzimidazole assembled 1,5- benzodizepine and 1,5-benzothiazepine derivatives. Der Pharm. Lett. 2011; 3 (2):284-291.

Venkat S. S. V. Synthesis of novel 1,5- Benzodiazepine derivatives as potential antimicrobial agents. Int. Multiling. Res. J. 2014; 1:0113.

Salve P. S, Mali D. S. An expeditious and efficient microwave assisted synthesis of 1,5-benzodiazepine derivatives. J. Chem. Pharm. Res. 2013; 5 (2): 158-161.

Salve P, Mali D. Evaluation of antimicrobial and antifungal activities of some newly synthesized 2,4-disubstituted-1,5- benzodiazepines. J. Cell Tissue Res. 2013; 13(2): 3687-3690.

Baseer M. A, Shaikh S. Synthesis and antimicrobial activities of some new 2, 3-dihydro-1, 5- benzodiazepine derivatives, Int. J. Pharm. Sci. Res. 2013; 4 (7): 2717-2720.

Sharma S, Jain R, Chawla C. Synthesis and Biological Activities of Some Benzodiazepine Derivatives. J. Chem. Pharm. Res. 2013; 5(7): 46-55.

Sharma V. P, Kumar, P. Synthesis, Spectral Studies and Antibacterial Activity of 3-(4-Phenyl-2,3-dihydro-1,5-benzodiazepin-2-yl)chromone. Asian J. Chem. 2014; 26(13): 3992-3994.

El-Subbagh H. I, Hassan G. S, El-Messery S. M, Al-Rashood S. T, Al-Omary F. A. M, Abulfadl Y. S, Shabayek M. I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modelling study. Eur. J. Med. Chem. 2014; 74: 234-245.

Crossref Crossmark

Published

2022-08-29

Issue

Section

Peer Reviewed Research Manuscript

How to Cite

“A Study on Biologically Active Chalcone Based Benzodiazepines” (2022) IARS’ International Research Journal, 12(02). doi:10.51611/iars.irj.v12i02.2022.216.

Citations