A Study on Biologically Active Chalcone Based Benzodiazepines

Authors

  • Anirudh Singh Shree Guru Gobind Singh Tricentenary University image/svg+xml
  • Anjaneyulu Bendi Shree Guru Gobind Singh Tricentenary University image/svg+xml
  • Aditi Tiwari Shree Guru Gobind Singh Tricentenary University image/svg+xml

DOI:

https://doi.org/10.51611/iars.irj.v12i02.2022.216

Keywords:

Benzodiazepines, Chalcones, Heterocycles, Pharmaceuticals

Abstract

Heterocycles that include nitrogen are now indispensable to humanity. The majority of the major pharmaceuticals on the market are composed of heterocycles that include nitrogen. One such substance is benzodiazepine, which was shown to have potential as an anti-anxiety medication in 1955. A novel class of chalcone-based benzodiazepines continues to receive the most attention because of their enhanced pharmacological, medicinal, and biological actions. The present study covers the chemistry of some important biologically active chalcone-based benzodiazepines.

Downloads

Download data is not yet available.

References

Archer G. A, Sternbach, L. H. Chem. Rev. 1968, 68, 6, 747-784. DOI: https://doi.org/10.1021/cr60256a004

Mehdi T, Benzodiazepines Revisited. BJMP. 2012; 5(1):a501

Wick JY, The History of Benzodiazepines. The consultant pharmacist. 2013; 28(9):538-548 DOI: https://doi.org/10.4140/TCP.n.2013.538

Tardibono, L. P.; Miller, Synthesis and Anticancer Activity of New Hydroxamic Acid Containing 1,4-Benzodiazepines. M. J. Org. Lett. 2009;11(4):1575-1578 DOI: https://doi.org/10.1021/ol900210h

Chen Y, Le V, Xu, X, Shao X, Liu J, Li Z. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett. 2014; 24(16): 3948- 3951. DOI: https://doi.org/10.1016/j.bmcl.2014.06.041

Misra A, Sharma S, Sharma D, Dubey S, Mishra A, Kishore D, Dwivedi J. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J. Chem. Sci. 2018;130(1):1-12. DOI: https://doi.org/10.1007/s12039-018-1430-7

Kumar R, Joshi YC. Synthesis and antimicrobial, antifungal and anthelmintic activities of 3H-1,5-benzodiazepine derivatives. J. Serb. Chem. Soc. 2008; 73(10): 937-943. DOI: https://doi.org/10.2298/JSC0810937K

Torres S. R, Frode T. S, Nardi, G.M, Vita N, Reeb R, Ferrara P, Ribeiro-do-Valle R. M, Farges R. C. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation. Eur. J. Pharmacol. 2000; 408 (2):199-211. DOI: https://doi.org/10.1016/S0014-2999(00)00760-3

Torres S. R. R, Nardi G. M, Ferrara, P, Ribeiro-do-Valle R. M, Farges R. C. Potential role of peripheral benzodiazepine receptors in inflammatory response Eur. J. Pharmacol. 1999; 385: R1- R2. DOI: https://doi.org/10.1016/S0014-2999(99)00745-1

Kamal A, Reddy K. L, Devaiah V, Shankaraiah N, Reddy G. S. K, Raghavan S. Solid-Phase Synthesis of a Library of Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones with Potential Antitubercular Activity J. Comb. Chem 2007; 9(1): 29-42. DOI: https://doi.org/10.1021/cc0501458

De Sarro G, Ferreri G, Gareri, P.; Russo, E.; De Sarro, A.; Gitto, R.; Chimirri, A. Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacol. Biochem. Behav. 2003; 74 (3): 595-602. DOI: https://doi.org/10.1016/S0091-3057(02)01040-7

Grasso S, De Sarro G, De Sarro A, Micale N, Zappala M, Puia G, Baraldi M, De Micheli C. Synthesis and Anticonvulsant Activity of Novel and Potent 2,3-Benzodiazepine AMPA/Kainate Receptor Antagonists. J. Med. Chem. 1999; 42 (21): 4414-4421. DOI: https://doi.org/10.1021/jm991086d

Rathore M. M, Rajput P. R, Parhate V. V Synthesis and Antimicrobial Activity of Some Chalcones and Flavones. Int. J. Chem. Phys. Sci. 2015; 4: 473-477.

Lin Y. M, Zhou Y, Flavin M. T, Zhou L. M, Nie W, Chen F. C. Chalcones and Flavonoids as Anti-Tuberculosis Agents. Bioorganic Med. Chem. 2002; 10 (8): 2795-2802. DOI: https://doi.org/10.1016/S0968-0896(02)00094-9

Alarcón J, Alderete J, Escobar C, Araya R, Cespedes C. L. Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatal. Biotransformation 2013; 31 (4): 160-167. DOI: https://doi.org/10.3109/10242422.2013.813489

Balasubramanian S, Nair M. G. An Efficient “One Pot” Synthesis of Isoflavones. Synth. Commun. 2000; 30 (3): 469-484. DOI: https://doi.org/10.1080/00397910008087343

Li Y, Sun B, Zhai J, Fu L, Zhang S, Zhang J, Liu H, Xie W, Deng H, Chen Z, Sang F. Synthesis and antibacterial activity of four natural chalcones and their derivatives Tetrahedron Lett. 2019; 60 (43): 151165-151167. DOI: https://doi.org/10.1016/j.tetlet.2019.151165

Arty I. S, Timmerman H, Samhoedi M, Sastrohamidjojo, Sugiyanto, Van Der Goot H. Synthesis of benzylideneacetophenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem. 2000; 35( 4): 449-457. DOI: https://doi.org/10.1016/S0223-5234(00)00137-9

Singh A, Viljoen A, Kremer L, Kumar V. Synthesis and Antimycobacterial Evaluation of Piperazyl-alkyl-Ether Linked 7-Chloroquinoline-Chalcone/Ferrocenyl Chalcone Conjugates .Chemistry Select. 2018; 3 (29): 8511-8513. DOI: https://doi.org/10.1002/slct.201801453

Shibata S. Anti-tumorigenic Chalcones. Stem Cells 1994; 12 (1): 44-52. DOI: https://doi.org/10.1002/stem.5530120109

Go M, Wu X, Liu X. Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Curr. Med. Chem. 2005; 12 (4): 483-499. DOI: https://doi.org/10.2174/0929867053363153

Orlov V.D, Kolos, N. N, Yaremenko F. G, Lavrushin V. F. New aspects of the chemistry of 2,3-dihydro-ih-i,5- benzodiazepine. Chem. Heterocycl. Compd. 1980; 16 (5): 547-550. DOI: https://doi.org/10.1007/BF00561358

Farooq S, Ngaini Z. One-Pot and Two-Pot Synthesis of Chalcone based Mono and Bis-Pyrazolines. Tetrahedron Lett. 2020; 61 (4): 151416. DOI: https://doi.org/10.1016/j.tetlet.2019.151416

Joshi V. D, Kshirsagar M. D, Singhal S. Synthesis and Antimicrobial activities of Various Pyrazolines from Chalcones. Int. J. ChemTech Res. 2012; 4(3): 971-975.

Sunitha V, Kumar A. K, Mahesh M, Shankaraiah P, Jalapathi P, Lincoln C. A. Synthesis and Antimicrobial Evaluation of Bis-3,5-disubstituted Isoxazoles Based Chalcones. Russ. J. Gen. Chem. 2018; 88 (9): 1904-1911. DOI: https://doi.org/10.1134/S1070363218090232

Roy R. S, Chundawat J. S, Dulawat S. S. Microwave assisted synthesis of 2,4-diaryl-2,3- dihydro-1H-1,5-benzodiazepines on solventless inorganic solid support and their antibacterial activities. Afinidad 2008; 65 (537): 404--409.

Bhatia M. S, houdhari P. B, Ingale K. B, Zarekar, B. E. Synthesis, screening and QSAR studies of 2,4-disubstituted 1,5-benzodiazepine derivatives. Orient. J. Chem. 2008; 24 (1): 147-152.

Kamal A, Balakishan G, Ramakrishna G, Basha Shaik T, Sreekanth K, Balakrishna M, Rajender, Dastagiri D, Kalivendi S. V. Synthesis and biological evaluation of cinnamido linked pyrrolo[2,1-c][1,4] benzodiazepines as antimitotic agents. Eur. J. Med. Chem. 2010; 45(9): 3870-3884. DOI: https://doi.org/10.1016/j.ejmech.2010.05.041

Hussain N, Dangi R, Talesara G. L. Synthesis and biological evaluation of some N-ethoxyphthalimido-4-phenyl-6- subsituted phenyl-2,3a,4,5-tetrahydro-3H-indazol-3-one via Robinson annulations reaction. Iran. J. Org. Chem. 2011; 3 (1): 563-572.

Yadav J. S, Srivastava Y. K. Microwave assisted rapid and efficient synthesis, characterization and pharmacological evaluation of some novel benzimidazole assembled 1,5- benzodizepine and 1,5-benzothiazepine derivatives. Der Pharm. Lett. 2011; 3 (2):284-291.

Venkat S. S. V. Synthesis of novel 1,5- Benzodiazepine derivatives as potential antimicrobial agents. Int. Multiling. Res. J. 2014; 1:0113.

Salve P. S, Mali D. S. An expeditious and efficient microwave assisted synthesis of 1,5-benzodiazepine derivatives. J. Chem. Pharm. Res. 2013; 5 (2): 158-161.

Salve P, Mali D. Evaluation of antimicrobial and antifungal activities of some newly synthesized 2,4-disubstituted-1,5- benzodiazepines. J. Cell Tissue Res. 2013; 13(2): 3687-3690.

Baseer M. A, Shaikh S. Synthesis and antimicrobial activities of some new 2, 3-dihydro-1, 5- benzodiazepine derivatives, Int. J. Pharm. Sci. Res. 2013; 4 (7): 2717-2720.

Sharma S, Jain R, Chawla C. Synthesis and Biological Activities of Some Benzodiazepine Derivatives. J. Chem. Pharm. Res. 2013; 5(7): 46-55.

Sharma V. P, Kumar, P. Synthesis, Spectral Studies and Antibacterial Activity of 3-(4-Phenyl-2,3-dihydro-1,5-benzodiazepin-2-yl)chromone. Asian J. Chem. 2014; 26(13): 3992-3994. DOI: https://doi.org/10.14233/ajchem.2014.16377

El-Subbagh H. I, Hassan G. S, El-Messery S. M, Al-Rashood S. T, Al-Omary F. A. M, Abulfadl Y. S, Shabayek M. I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modelling study. Eur. J. Med. Chem. 2014; 74: 234-245. DOI: https://doi.org/10.1016/j.ejmech.2014.01.004

Published

2022-08-29

Issue

Section

Peer Reviewed Research Manuscript

How to Cite

Singh, A., Bendi, A. and Tiwari, A. (2022) “A Study on Biologically Active Chalcone Based Benzodiazepines”, IARS’ International Research Journal, 12(02). doi:10.51611/iars.irj.v12i02.2022.216.

Plaudit