Synthetic Methods for the formation of Heterocyclic Compounds from Oxime Ether Derivatives

Authors

  • Himani Kumari Shree Guru Gobind Singh Tricentenary University image/svg+xml
  • Himanshi Kumar Shree Guru Gobind Singh Tricentenary University image/svg+xml
  • Kamlesh Sharma Shree Guru Gobind Singh Tricentenary University image/svg+xml

DOI:

https://doi.org/10.51611/iars.irj.v12i02.2022.213

Keywords:

Heterocyclic compounds, Oxime ethers, Isoxazoles, Azepines, Pyrazines

Abstract

Heterocyclic ring compounds are not only ubiquitous in prime diversity of vital natural products and synthetic pharmaceuticals and thus highly important in organic synthesis. They have an extensive range of applications.  They are mainly used as veterinary products and as agrochemicals. They are also utilized as corrosion inhibitors, sanitizers, antioxidants, dye stuff and as copolymers. They are accustomed as an important source in the synthesis of bioactive organic compounds. Some natural products like antibiotics such as tetracyclines, cephalosporin, penicillin, aminoglycosides, alkaloids such as morphine, vinblastine, atropine, reserpine, tryptamine, reserpine etc. have heterocyclic constituent. Hence, synthesis of heterocyclic compounds from new procedures have been always demanding. Due to wide range of applications of heterocyclic compounds, this study is a survey of literature of last one decade, describing the methods for the heterocyclic ring formation from the oxime ether.

Downloads

Download data is not yet available.

References

S.K. Ramadan, D.R.A. Haleem, S.M. Hisham, A. Rabboh, M.G. Nourhan, S.I. Wael, A. Elmagd, D.S.A. Haneen, RSC Adv. 2022, 12, 13628-13638. DOI: https://doi.org/10.1039/D2RA02388A

T.K. Venkatachalam, E.A. Sudbeck, C. Mao, F.M. Uckun, Bioorg. Med. Chem. Lett. 2001, 11, 523-528. DOI: https://doi.org/10.1016/S0960-894X(01)00011-7

L.M. Bedoya, E.D. Olmo, R. Sancho, B. Barboza, Bioorg. Med. Chem. Lett. 2006, 16, 4075-4079. DOI: https://doi.org/10.1016/j.bmcl.2006.04.087

A.C. Santana, C.S. Filho, J.C. Menezes, D. Allonso, V.R. Campos, Life. 2021, 11, 16. DOI: https://doi.org/10.3390/life11010016

A. De, S. Sarkar, A. Majee, Chem. Heterocycl. Comp. 2021, 57, 410-416. DOI: https://doi.org/10.1007/s10593-021-02917-3

J.H. Chern, C.C. Lee, C.S. Chang, Y.C. Lee, C.L. Tai, Y.T. Lin, K.S. Shia, C.Y. Lee, S.R. Shih, Bioorg. Med. Chem. Lett. 2004, 14, 5051-5056.

S. Zhou, S. Yang, G. Huang, J Enzyme Inhib Med Chem 2017, 32, 1183-1186. DOI: https://doi.org/10.1080/14756366.2017.1367774

A.M. Olaru, V. Vasilache, R. Danac, I.I Mangalagiu, J Enzyme Inhib Med Chem, 2017, 32,1291-1298. DOI: https://doi.org/10.1080/14756366.2017.1375483

R. Danac, I.I. Mangalagiu, Eur.J. Med. Chem. 2014, 74, 664-670. DOI: https://doi.org/10.1016/j.ejmech.2013.09.061

C. Chitra, S. Sudarsan, S. Sakthivel, S. Guhanathan, Int. J. Biol. Macromol. 2017, 95, 363-375.

M. Molnar, V. Pavić, B. Šarkanj, M. Čačić, D. Vuković, J. Klenkar, Heterocycl. Commun. 2017, 23, 1-8. DOI: https://doi.org/10.1515/hc-2016-0078

M.K. Singh, S. Sutradhar, B. Paul, S. Adhikari, A. Das, J. Mol. Str. 2017, 1139, 395-399. DOI: https://doi.org/10.1016/j.molstruc.2017.03.073

A.F. Abbass, E.H. Zimam, Int. J. ChemTech Res. 2016, 9, 206-217.

Y. Deng, C. Sun, D.K. Hunt, C. Fyfe, C.L. Chen, T.H. Grossman, J.A. Sutcliffe, X.Y. Xiao, J. Med. Chem. 2017, 60, 2498-2512. DOI: https://doi.org/10.1021/acs.jmedchem.6b01903

S. Narsimha, K. Battula, N.V. Reddy, Synth. Commun. 2017, 47, 928-933. DOI: https://doi.org/10.1080/00397911.2017.1296960

K. Iqbal, Q. Jamal, J. Iqbal, M. S. Afreen, M.Z.A. Sandhu, E. Dar, U. Farooq, M.F. Mushtaq, N. Arshad, M. M. Iqbal, Trop. J. Pharm. Res. 2017, 16, 429-437. DOI: https://doi.org/10.4314/tjpr.v16i2.23

M. Gür, N. Şener, H. Muğlu, M.S. Çavus, O.E. Özkan, F. Kandemirli, İ. Şenerd J. Mol. Str. 2017, 1139, 111-118. DOI: https://doi.org/10.1016/j.molstruc.2017.03.019

A.C. Sauer, J.G. Leal, S.T. Stefanello, M.T.B. Leite, M.B. Souza, F.A.A. Soares, O.E.D. Rodrigues, L. Dornelles, Tetrahedr. Lett. 2017, 58, 87-91. DOI: https://doi.org/10.1016/j.tetlet.2016.11.106

N.J. Siddiqui, S. Chaitali, M. Idrees, Ind. J. Adv. Chem. Sci. 2017, 5, 43-49.

E.A. Haidasz, D.A. Pratt, Org. Lett. 2017,19,1854-1857. DOI: https://doi.org/10.1021/acs.orglett.7b00615

M. Bellam, M. Gundluru, S. Sarva, S. Chadive, Chem. Heterocycl. Compd. 2017, 53, 173-178. DOI: https://doi.org/10.1007/s10593-017-2036-6

T. Plach, B. Kapron, J.J. Luszczki, et al. Eur. J. Med. Chem. 2014, 86, 690-699.

R.R. Putta, S.D. V, R. Guda, P. Adivireddy, V. Padmavathi, J. Heterocycl. Chem., 2017, 54, 2216-2222. DOI: https://doi.org/10.1002/jhet.2808

Z. Zhang, B. Yu, J. Org. Chem. 2003, 68, 6309-6313. DOI: https://doi.org/10.1021/jo034223u

M.M. Herav RSC Adv. 2020, 10, 44247-44311. DOI: https://doi.org/10.1039/D0RA09198G

S.F. Ana, B. Luminita, Mol. Divers. 2017, 21, 437-454. DOI: https://doi.org/10.1007/s11030-017-9735-x

W. Wang, Y. Zhou, H. Peng, H. He, X. Lu, J. Fluor. Chem. 2017, 193, 8-16. DOI: https://doi.org/10.1016/j.jfluchem.2016.11.008

S.A. Morsy, A.A. Farahat, M.N.A. Nasr, A.S. Tantawy, Saud. Pharm. J. 2017, 25, 873-883. DOI: https://doi.org/10.1016/j.jsps.2017.02.003

Y. Liu, L. Qing, C. Meng, J. Shi, Y. Yang, Z. Wang, G. Han, Y. Wang, J. Ding, L.H. Meng, Q. Wang, J. Med. Chem.2017, 60, 2764-2779. DOI: https://doi.org/10.1021/acs.jmedchem.6b01502

Y. Thigulla, T.U. Kumar, P. Trivedi, B. Ghosh, Chem. Sel. 2017, 7, 2721-2724.

R.K. Amewu, P.O. Sakyi, D. Osei-Safo, I. Addae-Mensah, Molecules 2021, 26, 7134. DOI: https://doi.org/10.3390/molecules26237134

L. Bai, X. Li, L. He, Y. Zheng, H. Lu, J. Li, L. Zhong, R. Tong, Z. Jiang, J. Shi, J. Li, Am. J. Chin. Med. 2019, 47, 933-957. DOI: https://doi.org/10.1142/S0192415X19500496

M.B. Qazijahani, H. Badali, H. Irannejad, M.H. Afsarian, S. Emami, Eur. J. Med. Chem. 2014, 76, 264-273. DOI: https://doi.org/10.1016/j.ejmech.2014.02.019

P. Parthiban, P. Rathika, V. Ramkumar, S.M. Son, Y.T. Jeong, Bioorg. Med. Chem. Lett. 2010, 20, 1642-1647. DOI: https://doi.org/10.1016/j.bmcl.2010.01.048

J.H. Chern, C.C. Lee, C.S. Chang, Y.C. Lee, C.L. Tai, Y.T. Lin, K.S. Shia, C.Y. Lee, S.R. Shih, Bioorg. Med. Chem. Lett. 2004, 14, 5051-5056. DOI: https://doi.org/10.1016/j.bmcl.2004.07.084

S. A Carvalho, et al. J. Heterocycl. Chem. 2017, 54, 3626-3631. DOI: https://doi.org/10.1002/jhet.2989

M.R. Gannarapu, S.B. Vasamsetti, N. Punna, N.K. Royya, S.R. Pamulaparthy, J.B. Nanubolu, S. Kotamraju, N. Banda, Eur. J. Med. Chem. 2014, 75, 143-150. DOI: https://doi.org/10.1016/j.ejmech.2013.12.053

S. Emami, A. Kebriaeezadeh, N. Ahangar, R. Khorasani, Bioorg. Med. Chem. Lett. 2011, 21, 655-659. DOI: https://doi.org/10.1016/j.bmcl.2010.12.021

B. Chakravarti, T. Akhtar, B. Rai, M. Yadav, J.A. Siddiqui, S.K.D. Dwivedi, R. Thakur, A.K. Singh, H. Kumar, J. Med. Chem. 2014, 57, 8010-8025. DOI: https://doi.org/10.1021/jm500873e

H.J. Park, K. Lee, S.J. Park, B. Ahn, J.C. Lee, H. Cho , K.I. Lee, Bioorg. Med. Chem. Lett. 2005, 15, 3307-3312. DOI: https://doi.org/10.1016/j.bmcl.2005.03.082

R. Akunuri, V. Veerareddy, G. Kaul, Bioorg. Chem. 2021, 116, 105288. DOI: https://doi.org/10.1016/j.bioorg.2021.105288

Z. Mirjafary, M. Abdoli, H. Saeidian, S. A. Boroon, Kakanejadifard, RSC Adv. 2015, 5, 79361-79383. DOI: https://doi.org/10.1039/C5RA15299B

E. Vessally, M. Abdoli, J. Iran Chem. Soc. 2016, 13, 1235-1256. DOI: https://doi.org/10.1007/s13738-016-0838-6

Y. Jiang, W.C. Chan, C.-M. Park, J. Am. Chem. Soc. 2012 134, 4104-4107. DOI: https://doi.org/10.1021/ja300552c

M. Ueda, Y. Ikeda, A. Sato, Y. Ito, M. Kakiuchi, H. Shono, T. Miyoshi, T. Naito and O. Miyata, Tetrahedron, 2011,67, 4612-4615. DOI: https://doi.org/10.1016/j.tet.2011.04.083

Z. She, D. Niu, L. Chen, M.A. Gunawan, X. Shanja, W.H. Hersh, Y. Chen, J. Org. Chem. 2012,77, 3627-3633 DOI: https://doi.org/10.1021/jo300090k

N.S. Loy, S. Kim, C.-M. Park, Org. Lett. 2015, 17, 395-397. DOI: https://doi.org/10.1021/ol5034173

M. Zhang, J. Zhang, Isr. J. Chem. 2013, 53, 911–914. DOI: https://doi.org/10.4028/www.scientific.net/AMR.694-697.911

H. Gao, Q.L. Xu, C. Keene, L. Kürti, Chem. Eur. J. 2014, 20, 8883-8887.

H.Y. Wang, D.S. Mueller, R.M. Sachwani, R. Kapadia, H.N. Londino, L.L. Anderson, J. Org. Chem. 2011, 76, 3203-3221. DOI: https://doi.org/10.1021/jo200061b

H. Mora-Radó, L. Sotorríos, M.P.B. Jones, L. Bialy, W. Czechtizky, M. Méndez, E. Gómez-Bengoa, J. P. A. Harrity, Chem. Eur. J., 2018, 24, 9530. DOI: https://doi.org/10.1002/chem.201802350

Y. Wang, F. Huang, S. Zhang. Eur. J. Org. Chem., 2020, 2020, 5178-5181. DOI: https://doi.org/10.1002/ejoc.202000678

R. Kotipalli, A. Nagireddy, M.S. Reddy, Org. Biomol. Chem.2022, 20, 2609-2614. DOI: https://doi.org/10.1039/D2OB00065B

N. E. Behnke, K. Lovato, M. Yousufuddin, L. Kürti, Chem. Int. Ed. 2019, 58, 14219. DOI: https://doi.org/10.1002/anie.201909151

S.R. Mohanty, B. V. Pati, S. K. Banjare, G.K. Das Adhikari, P. Chandrababu, R. Kumar J. Org. Chem. 2021, 86, 1074-1083. DOI: https://doi.org/10.1021/acs.joc.0c02558

Z. Zhang, R. Chen, X.H. Zhang, X.G. Zhang, J. Org. Chem. 2021, 86, 632-642. DOI: https://doi.org/10.1021/acs.joc.0c02286

Published

2022-08-29

Issue

Section

Peer Reviewed Research Manuscript

How to Cite

Kumari, H., Kumar, H. and Sharma, K. (2022) “Synthetic Methods for the formation of Heterocyclic Compounds from Oxime Ether Derivatives”, IARS’ International Research Journal, 12(02). doi:10.51611/iars.irj.v12i02.2022.213.

Plaudit