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Formation of Morphable 3D­model of Large 

Scale Natural Sites by Using Image Based 

Modeling and Rendering Techniques 

Abstract 
No global 3D model of the environment needs to be assembled, a process which can be 

extremely cumbersome and error prone for large scale scenes e.g. the global registration 

of multiple local models can accumulate a great amount of error, while it also presumes 

a very accurate extraction of the underlying geometry. On the contrary, neither any such 

accurate geometric reconstruction of the individual local 3D models nor a very precise 

registration between them is required by our framework in order that it can produce 

satisfactory results. This paper presents an application of LP based MRF optimization 

techniques and also we have turned our attention to a different re­ search topic: the 

proposal of novel image based modeling and rendering methods, which are capable of 

automatically reproducing faithful (i.e. photorealistic) digital copies of complex 3D 

virtual environments, while also allowing the virtual exploration of these environments at 

interactive frame rates. 

Keywords- MRF , LP,SEARCH, MORPHING 

Introduction 
In recent years, there has been a great deal of new developments in applying topological 

tools to image analysis. In particular, computing topological invariants has been of great 

importance in understanding the shape of an arbitrary 2-dimensionall (2D) or 3-

dimensional (3D) object. The most powerful invariant of these objects is the fundamental 

group. Unfortunately, fundamental groups are highly non-commutative and difficult to 

work w. In fact, the general problem in determining whether two given groups are 

isomorphic is not decidable (meaning that there is no algorithm can solve the problem). 

For fundamental groups of 3D objects, this problem is decidable but no practical 

algorithm has been found yet. As a result, homology groups have received the most 

attention because their computations are more feasible and they still provide significant 

information about the shape of the object. This leads to the motivating problem addressed 

in this paper: Given a 3D object in 3- dimensional Euclidean space R3, determine 

homology groups of the object in the most effective way by only analyzing the 

digitization of the object. The properties of homology groups have applications in many 
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areas of bioinformatics and image processing. We particularly look at a set of points in 

3D digital space, and our purpose is to find homology groups of the data set. 

One research problem of computer graphics that has attracted a lot of attention over the 

last years is the creation of modeling and rendering systems capable to provide 

photorealistic & interactive walkthroughs of complex, real world environments. Two are 

the main approaches that have been proposed so far for that purpose. On one hand, there 

exist those techniques that are geometry based techniques i.e. first try to estimate an 

accurate global 3D model of the scene. Then they use the extracted 3D model in order to 

render the scene under any given viewpoint. One of their advantages is that they provide 

great flexibility and allow many of the scene's properties to be modified during rendering. 

E.g. by having a global 3D model one can readily alter not only the viewpoint, but also 

the lighting conditions of the scene. However, their big disadvantage comes from the fact 

that extracting an accurate global 3D model can be either extremely time consuming or 

very difficult (not to say impossible) in many cases. For example such a 3D­ model 

construction task can be easy for scenes containing mostly planar objects (e.g. 

architectural type scenes), but becomes extremely hard for outdoor scenes containing 

objects with irregular geometry e.g. trees. The automatic extraction of a 3D­model from 

images, also known as multiple view geometry, has been (and still is) an active research 

topic in computer vision. In fact a significant amount of progress has been achieved in 

this area over the last years. 

Overview of the modeling pipeline    
A diagram of our system's modeling pipeline is shown in Figure 1. We will first consider 

the simpler case of having only one stereoscopic view per key­ position of the path. Prior 

to capturing these stereoscopic views, a calibration of the stereoscopic camera needs to 

take place first. During this stage both the external parameters (i.e. the relative 3D 

rotation and translation between the left and right camera), as well as the internal 

parameters of the stereoscopic camera are estimated. We make the common assumption 

that both the left and right cameras are modeled by the usual pinhole. In this case their 

internal parameters are contained in the so called intrinsic matrices
rightleft KK , . Any such 

matrix has the following form: 

















100

0 0

0

vf

ucf

y

x

 



  Vol. 1, No. 2, 2011 

        ISSN 1839-6518  82800102201103  

www.irj.iars.info   Page 5 

Here ),( yx ff   represents the focal length, c describes the skewness of the 2 image axes 

while 
),( 00 vu
  represents the principal point. We also model (both radial and tangential) 

lens distortion and the following model is assumed for this purpose: 
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Here (x, y) are the ideal (distortion free) pixel coordinates,  yx ˆ,ˆ  are the corresponding 

observed image coordinates and
22 yxr 

. For estimating all of these parameters we 

apply a method similar to that in [3], using as input stereoscopic image pairs of a 

calibrated chess pattern captured at random positions and orientations by our camera (see 

Figure 2 ). After the camera calibration has finished, the following stages of the modeling 

pipeline need to take place: 

1. Local 3D models construction: A photometric and geometric representation of the 

scene near each key position of the path is constructed. The geometric part of a 

local model needs to be only an approximation of the true scene geometry. 

2. Approximate registration between successive local 3D models: An estimation of 

the relative pose between successive local models takes place here. We should 

note that only a coarse estimate of the relative pose is needed, since this will not 

be used for an exact registration of the local models, but merely for the morphing 

procedure that takes place later. 

3. 3D morph able models construction: The photometric as well as the geometric 

morphing between successive local 3D models is estimated during this stage of 

the modeling pipeline. 

In the case that there are multiple views per key position of the path, then, as already 

explained, there will also have to be an additional stage responsible for the 3D­mosaics 

construction. This stage needs to take place prior to the registration step and is described. 

Finally, we describe the rendering pipeline of our system. 

Local 3D models construction  
For each stereoscopic image pair, a 3D model describing the scene locally (i.e. as seen 

from the camera viewpoint) must be produced during this stage. To this end, a stereo 

matching procedure is applied to the left and right images (denoted leftI
and rightI

), so that 

disparity can be estimated for all points inside a selected image region 0dom
of leftI

.Using 
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then the resulting disparity map (as well as the calibration matrices of the cameras) a 3D 

reconstruction takes place and thus the maps 000 , andZYX
  are produced (see Figure 3). 

These maps respectively contain the x, y and z coordinates of the reconstructed points 

with respect to the 3D coordinate system of the left camera. The set 

),,,,( 00000 domIZYXL left
  consisting of the images 000 ,, ZYX

(the geometric-maps), the 

image region dom0 (valid domain of geometric maps) and the image  leftI
 (the 

photometric map) makes up what we call a ``local model''  0L
 . Hereafter that term will 

implicitly refer to such a set of elements. By applying a 2D triangulation on the image 

grid of a local model, a textured 3D triangle mesh can be produced. The 3D coordinates 

of triangle vertices are obtained from the underlying geometric maps while texture is 

obtained from leftI
  and mapped onto the mesh (see Figure 4). It should be noted that the 

geometric maps of a local model are expected to contain only an approximation of the 

scene's true geometric model. 

Disparity estimation      
Disparity estimation proceeds in two stages (see Figure 5). During the first stage, we 

reduce the problem of stereo matching to a discrete labeling problem which is going to be 

solved through the energy optimization a 1st order Markov Random Field. The nodes of 

the corresponding MRF are going to be the pixels of the left image and the single node 

potential for assigning disparity dp to pixel p is going to be estimated as follows: 

2

)()()( pIdpIdV leftprightpp   

 Furthermore, for the pair wise potentials the truncated semi-metric distance between 

disparities has been used, i.e.: 

 2

,0min),( qpqppq ddddV    

Here λ0 denotes the maximum allowed penalty that can be imposed. For the optimization 

of the above MRF, the LP based algorithms have been used, since they can always 

guarantee a solution which is close to the optimal one. The role of the first stage is to 

produce a good initial estimate of the disparity and to avoid any bad local minima during 

the optimization process. Its output is then given as input to the next stage of the disparity 

estimation process, where a global refinement of the disparity field is taking place. To 

this end, the energy of a first order Markov Random Field is again being minimized .The 
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difference, however, with respect to the first stage, is that now a local continuous 

optimization scheme is being used so that disparities with sub-pixel accuracy can be 

obtained. In particular, we use a standard gradient descent type algorithm for minimizing 

the following energy function: 

   



),(

2

),(

)(,),(
ji Np

pijleft

ji

ijright

ij

ddgjiIjdiI   where Nij is the 4­point neighborhood 

of pixel (i, j) and dij again represents the unknown disparity field. The λ parameter is a 

regularization parameter, while the potential function g( . ) is chosen to be discontinuity 

adaptive [2] (e.g. a truncated quadratic distance), so that a regularized solution, which 

also preserves discontinuities, is finally computed. The disparity field is initialized with 

the values estimated during the first stage. Due to this initialization the gradient descent 

algorithm usually converges very fast and does not get trapped to any poor local minima.  

 

Relative pose estimation between successive local models 

               Let  
),,,,( kkkkkk domIZYXL 

 and 
),,,,( 111111   kkkkkk domIZYXL
  be 2 

successive local models along the path. For their relative pose estimation, we need to 

extract a set of point matches 
),( ii qp
 between the left images 1, kk II

 of models 1, kk LL
 

respectively. Assuming that such a set of matches already exists, the pose estimation can 

proceed as follows: the 3D points of  kL
 corresponding to ip

are 

 )(),(,)( ikikiki pZpYpXP 
and so there projections of ip

on image 1kI
are: 

2' ).( PTPRKp ilefti  , where R (a 3 X3 ortho-normal matrix) and T (a 3D vector) 

represent the unknown rotation and translation respectively.  

So the pose estimation can be achieved by minimizing the following re-projection error:        

2' ),(
i

ii pqdist  

where dist denotes Euclidean image distance. For this purpose, an iterative constrained 

minimization algorithm may be applied with rotation represented internally by a 

quaternion  1qq  . The essential matrix (also computable by the help of the matches 
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 ii qp ,
and ), rightleft KK  can be used to provide an initial estimate [6] for the iterative 

algorithm. 

Wide­baseline feature matching under camera looming 
Therefore the pose estimation problem is reduced to that of extracting a sparse set of 

correspondences between 1, KK II  . A usual method for tackling the latter problem is the 

following: first a set of interest points in KI   are extracted (using an interest point 

detector). Then for each interest point, say p, a set of candidate points CANDp inside a 

large rectangular region SEARCHp of  1KI  are examined and the best one is selected 

according to a similarity measure. Usually the candidate points are extracted by applying 

an interest point detector to region SEARCHp as well. 

However unlike left/right images of a stereoscopic view, 1, KK II  are separated by a wide 

baseline. Simple measures like correlation have been proved extremely inefficient in such 

cases. Assuming a smooth predefined path (and therefore a smooth change in orientation 

between 1, KK II ), it is safe to assume that the main difference at an object's appearance 

in images 1, KK II , comes from the forward camera motion along the Z axis (looming). 

The idea for extracting valid correspondences is then based on the following observation: 

the dominant effect of an object being closer to the camera in image 1KI  is that its image 

region in 1KI  appears scaled by a certain scale factor s>1. That is, if 1,  KK IqIp are 

corresponding pixels: )()(1 pIsqI kk  . So an image patch of   KI at p should look similar 

to an image patch of an appropriately rescaled (by  S
-1

) version of 1KI . Of course, the 

scale factor s varies across the image. Therefore the following strategy, for extracting 

reliable matches, can be applied: 

1. Quantize the scale space of s to a discrete set of values  n

jjsS
0

 , where 

nsss  ....1 10  

2. Rescale 1KI by the inverse scale 
1

js  for all Ss j  to get rescaled images 
jsKI ,1  

For any kk IpIq   ,1 , let us denote by 
)(,1 qI

jsK  a (small) fixed-size patch around the 

projection of q  on jsKI ,1 and by 
)( pIk  an equal-size patch of kI

 at p. 
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3. Given any point KIp    and its set of candidate points 
 iP qCAND 

in ,1kI
 use 

correlation to find among the patches at any  iq
 and across any scale is

, the one most 

similar to kI
 at p :

   )(,)(
,

max
arg, ,1 pIqIcorr

sq
sq kisk

ji

ii j

 

This way, apart from a matching point 1

'

 kIq
, a scale estimate 

's  is provided for point p 

as well. 

The above strategy has been proved very effective, giving a high percentage of exact 

matches even in cases with very large looming. Such an example can be seen in Figure 6 

wherein the images baseline is 15   meters, resulting in scale factors of 5.2size   for 

certain image regions. Even if we set as candidate points CANDp of a point p, all points 

inside SEARCHp in the   in the other image (and not only detected Interest points 

therein), the above procedure still picks the right matches in most cases. The results in 

Figure 7 have been produced in this way. 

Morphing estimation between successive local models 
At the current stage of the modeling pipeline, a series of approximate local 3D models 

(along with approximate estimates of the relative pose between every successive two) are 

available to us. Let
),,,,( kkkkkk domIZYXL 

, 
),,,,( 111111   kkkkkk domIZYXL
 be such 

a pair of successive local models and kpos
to 1kpos

 their corresponding key positions on 

the path. By making use of the approximate pose estimate between  kL
 and 1kL

, we will 

assume hereafter that the 3D vertices of both models are expressed in a common 3D 

coordinate system. Rather than trying to create a consistent global model by combining 

all local ones (a rather tedious task requiring among others high quality geometry and 

pose estimation) we will instead follow a different approach, which is based on the 

following observation: near path point kpos
, model kL

 is ideal for representing the 

surrounding scene. On the other hand, as we move forward along the path approaching 

key position of the next model 1kL
, the photometric and geometric properties of the 

environment are much better captured by that model. (For example compare the fine 

details of the rocks that are revealed in Figure 6 and are not visible in Figure 7). So 

during transition from kpos
to 1kpos

 , we will try to gradually morph model  kL
 into a 

new destination model, which should coincide with 1kL
  upon reaching point posk+1. (In 

fact, only part of this destination model can coincide with  1kL
  since in general  1, kk LL
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will not represent exactly the same part of the scene). This morphing should be geometric 

as well as photometric (the latter wherever possible) and should proceed in a physically 

valid way. For this reason, we will use what we call a  “morph able 3D­model “. 

 dstdstdstdstkmorh IZYXLL ,,,
 

In addition to including the elements of  morhk LL ,
also consists of map dstdstdst ZYX ,,

 and 

map dstI
 containing respectively the destination 3D vertices and destination color values 

for all points of  kL
. At any time during the rendering process, the 3D coordinates  

ijvert
and color ijcol

of the vertex of morhL
at point (i, j) will then be: 

























),(),()1(

),(),()1(

),(),()1(

jimZjiZm

jimYjiYm

jimXjiXm

vert

dstk

dstk

dstk

ij ……(1) 

),(),()1( jimIjiImcol dstkij       ………(2) 

where m is a parameter determining the amount of morphing ( m =0 at kpos
, m=1 at 

1kpos
 and 0<m<1 in between) . Specifying therefore morhL

 amounts to filling in the 

values of the destination maps  
 dstIZYX ,,,

  for each point kdomp
 . For this purpose, 

a 2­step procedure will be followed that depends on whether point p has a physically 

corresponding point in  1kL
 or not: 

1. Let   be that subset of region kk Idom 
 , consisting only of those kL

 points that have 

physically corresponding points in model  1kL
 and let  1kku  be a function which maps 

these points to their counterparts in the  1kI
 image. 

(Region    represents that part of the scene which is common to both models  
)1, kk IL

. 

Since model  kL
 (after morphing) should coincide with 1kL

 , it must then hold: 
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Points of region   are therefore transformed both photo metrically and geometrically. 

2. The rest of the points (that is points in 
)\ kdom
 do not have counterparts in 

model  1kL
 . So these points will retain their color value (from model  kL

) at the 

destination maps and no photometric morphing will take place: 

 ppIpI kdst ),()(    …………………(4) 

But we still need to apply geometric morphing to those points so that no Distortion / 

discontinuity in the 3D structure are observed during transition from kpos
 to 1kpos

  . 

Therefore we still need to fill in the destination 3D coordinates for all points in   . The 2 

important remaining issues (which also constitute the core of the morphing procedure) 

are: 

* How to compute the mapping 1kku
 . This is equivalent to estimating a 2D optical 

flow field between the left images  kI
 and 1kI

 . 

*  And how to obtain the values of the destination geometric maps at the points 

inside region   , needed for the geometric morphing therein. Both of these issues will be 

the subject of the two subsections that follow. 

Estimating optical flow between wide baseline images  kI  and  1kI    
In general, obtaining a reliable, relatively dense optical flow field between wide baseline 

images like  kI
 and  1kI

  is a particularly difficult problem. Without additional input, 

usually only a sparse set of optical flow vectors can be obtained in the best case. In this 

case the basic problems are: 
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1. For every point in  kI
, a large region of image  1kI

 has to be searched for 

obtaining a corresponding point. This way the chance of an erroneous optical flow 

vector increases significantly (as well as the computational cost) . 

2. Simple measures (like correlation) are very inefficient for comparing pixel blocks 

between wide baseline images . 

3. Even if both of the above problems are solved, optical flow estimation is 

inherently an ill posed problem and additional assumptions are needed. In 

particular, we need to somehow impose the condition that the optical flow field 

will be piecewise smooth. 

For dealing with the first problem, we will make use of the underlying geometric maps 

kkk ZYX ,,
 of model kL

  as well as the relative pose between  kI
 and 1kI

. By using these 

quantities, we can theoretically re-project any point, say p, of  kI
 onto image  1kI

. In 

practice since all of the above quantities are estimated only approximately, this permits us 

just to restrict the searching over a smaller region Rp around the re-projection point. The 

search region can be restricted further by taking the intersection of Rp with a small zone 

around the epipolar line corresponding to p. In addition, since we are interested in 

searching only for points of 1kI
 that belong to  1kdom

 (this is where 1kL
  is defined), 

the final search region SEARCHp of p will be  1 kp domR
. If  SEARCHp is empty, 

then no optical flow vector will be estimated and point p will be considered as not 

belonging to region   . For dealing with the second problem, we will use a technique 

similar to get a sparse set of correspondences. As already stated therein, the dominant 

effect due to a looming of the camera is that pixel neighborhoods in image 1kI
 are 

scaled by a factor varying across the image. The solution proposed therein was to 

compare image patches of kI
 not only with patches from  1kI

, but also with patches 

from rescaled versions of the latter image. We will use the same technique here, with the 

only difference being that instead of doing that for a sparse group of features we will now 

apply it to a dense set of pixels of image kI
. For this purpose we will again use a discrete 

set  of scale factors
 nsssS  .....1 10   and we will rescale image 1kI

 by each one 

of these factors where, as before, image 1kI
 rescaled by 

1s  (with )Ss  will be denoted 

by  IK+1,s. As we shall see in the next paragraph, this will have the effect of having to 

change the type of labels that we will use in the associated labeling problem. 
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Finally, to deal with the ill posed character of the problem, we will first reduce the optical 

flow estimation to a discrete labeling problem and then formulate it in terms of 

minimizing the energy of a first order Markov Random Field [9]. What is worth noting 

here is that, contrary to a standard optical flow estimation procedure, the labels will now 

consist of vectors  , 
SRsdd yx  2),,(

  where the first 2 coordinates denote the 

components of the optical flow vector while the third one denotes the scale factor. This 

means that after labeling, not only an optical flow, but also scale estimation will be 

provided for each point (see Figure 9 ). Given a label l, we will denote its optical flow 

vector by 
),()( yx ddflow 

 and its scale by  sscale )(  . Based on what was already 

mentioned above, the labels which are allowed to be assigned to a point p in kI
will be 

coming from the following set:    SSEARCHqpqLABELS PP  :  . This definition 

of the label set PSEARCH   simply encodes the following two things: 

*   For any point p of the first image, we are searching for corresponding points q only 

inside the restricted region PSEARCH  

* We also search across all scales in S, i.e. given a candidate matching point 

PSEARCHq  for p, we compare patch 
))( kk IpI 
 with any of the patches 

sksk IqI ,1,1 )(  
;s where the scale s traverses all the elements of set S (see Figure 8). As 

before  
))( kk IpI 
denotes a fixed size patch around p, while sksk IqI ,1,1 )(  

 denotes an 

equal size patch, which is located around the projection of q on the rescaled image IK+1,s. 

Getting an optical flow field is then equivalent to picking one element from the Cartesian 

product Pp
LABELSLABELS  


  . In our case, that element x of LABELS, which 

minimizes the following energy should be chosen: 

 
 


Npp p

pppppp xVxxVxf
)',(

'' )(),()(


…….(5) 

The first sum in F(x) represents the prior term and penalizes optical flow fields which are 

not piecewise smooth, while the second sum in the above energy represents the likelihood 

and measures how well the corresponding optical flow agrees with the observed image 

data. The symbol N denotes a set of interacting pairs of pixels inside   . (we typically 
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assume a 4­system neighborhood) and 
(.,.)'ppV

 denotes the pair wise potential function of 

the MRF. In our case, this function can be set as follows: 

 0

2

'

2

''' ,)()()()(min),( pppppppp xscalexscalexflowxflowxxV                    ..(6)   

   

where  0  denotes the maximum pair wise penalty that can be imposed. Simpler pair 

wise potential functions, like the Potts function, have been also tested. Regarding the 

terms  
)( pp xV

, these measure the correlation between corresponding image patches as 

determined by the labeling x. According to a labeling x , for a point p  in kI
  its 

corresponding point is the projection into image  )(,1 pxscalekI   of point  
)( pxflowp
. This 

means that we should compare the patches
)( pIk   and  

))()((,1 ppscalek xflowpxI   and, 

for this reason, we set: 

 ))()((,)()( ,1 ppscalekkpp xflowpxIpIcorrxV   (7) 

 

The above energy F(x) can be minimized using any of the LP-based MRF optimization 

algorithms . The resulting optical flow, obtained when using the two images of Figure 6  

as input, is shown in Figure 9. For comparison, we also show there (Figure 9 ) the 

corresponding optical flow result, which is estimated if no search across scales takes 

place i.e. }1{S  . As expected, in this case, the resulting optical flow is very noisy for 

regions that are actually undergoing a large change of scale. 

Geometric morphing in region  

After estimation of optical flow  1kku
, we may apply equation (3) to all points in   

and thus fill  the arrays dstdstdst ZYX ,,
 therein (see Figure 10 ). Therefore, at this stage of 

the modeling pipeline, the values of the destination geometric maps dstdstdst ZYX ,,
  are 

known for all points inside region   , but are unknown for all points inside region 

 \kdom
  (i.e. the region which is the complement of    in kdom

 ). Hereafter, the 
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already known values of the destination geometric maps will be denoted by  dstdstdst ZYX ˆ,ˆ,ˆ
  

i.e. we define: 

 |ˆ,|ˆ,|ˆ
dstdstdstdstdstdst ZZYYXX 

….(8) 

To completely specify morphing, we still need to fill the values of the destination 

geometric maps for all points in 
 \kdom

. In other words, we need to specify the 

destination 3D vertices for all points of  kL
  in    . Since these points do not have a 

physically corresponding point in 1kL
, we cannot apply (3) to get a destination 3D vertex 

from model  . 1kL
 . The simplest solution would be that no geometric morphing is 

applied to these points and that their destination vertices just coincide with their  kL
 

vertices. However, in that case: 

*  points in    will have destination vertices from 1kL
 , 

* while points in     will have destination vertices from  kL
 , 

The problem resulting out of this situation is that the produced destination maps 

dstdstdst ZYX ,,
 (see Figs. 10 , 11) will contain discontinuities along the boundary (say 

 ) between regions   and   , causing this way annoying discontinuity artifacts 

(holes) in the geometry of the “morphable 3D­model'' during the morphing procedure. 

This will happen because the geometry of both kL
  and 1kL

, as well as their relative 

pose, have been estimated only approximately, and therefore these two models may not 

match perfectly when placed in a common 3D coordinate system. 

The right way to fill in the destination vertices at the points in     is based on the 

observation that a physically valid destination 3D model should satisfy the following 2 

conditions: 

1. On the boundary of    , no discontinuity in 3D structure should exist, i.e. the unknown 

values of   dstdstdst ZYX ,,
 along the boundary    should match the corresponding known 

values specified by  dstdstdst ZYX ˆ,ˆ,ˆ
 along that boundary. 
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2. In the interior of    , the relative 3D structure of the initial  kL
  model should be 

preserved. 

Intuitively, these two conditions simply imply that, as a result of morphing, vertices of  

kL
 inside     must be deformed without distorting their relative 3D structure so as to 

seamlessly match the 3D vertices of  1kL
  along the boundary of    . In mathematical 

terms the first condition obviously translates to: 

   |ˆ|,|ˆ|,|ˆ| dstdstdstdstdstdst ZZYYXX        

….(9) 

while the second condition, which imposes the restriction of preserving the relative 3D 

structure of  kL
, simply implies 

















































',,

)'()(

)'()(

)'()(

)'()(

)'()(

)'()(

pp

pZpZ

pYpY

pXpX

pZpZ

pYpY

pXpX

kk

kk

kk

dstdst

dstdst

dstdst

                                                                          

…………..(10) 

this is easily seen to be equivalent to: 

 

















































p

pZ

pY

pX

pZ

pY

pX

k

k

k

dst

dst

dst

,

)(

)(

)(

)(

)(

)(

               ….(11) 

 

We may then extract the destination vertices by solving 3 independent minimization 

problems (one for each of  
),, dstdstdst ZYX
 which is all of the same type. It therefore 

suffices to consider only one of them. E.g. for estimating  dstZ
 we need to find the 

solution to the following optimization problem: 

 


,
min 2

kdst

dst

ZZ
Z

with       |ˆ| dstdst ZZ (12) 
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For discretizing the above problem we can make use of the underlying discrete pixel grid. 

To this end, we assume a 4­system neighborhood for the image pixels and we denote by 

N(p) the corresponding neighborhood of pixel p. In this case, the boundary   equals 

the set   0)(:   pNp and the finite difference discretization of (5) yields 

the following quadratic optimization problem: 

2

)(

)])()([)()((
min

qZpZqZpZ
Z

kkdst

p pNq

dst

dst

 
 

with )(ˆ)( pZpZ dstdst  , p  ---

…………….. (13) 

This quadratic problem is, in turn, equivalent to the following system of linear equations: 

 



)()(

)()()()()(
pNq

kk

pNq

dstdst qZpZqZpZpN    p  

)(ˆ)( pZpZ dstdst  , p       …………..…(14) 

than can be solved with an iterative algorithm very efficiently due to the fact that all these 

linear equations form a sparse (banded) system. 

Also, an alternative way of solving our optimization problem in (5) is by observing that 

any function minimizing (5) is also a solution to the following Poisson equation with 

Dirichlet boundary conditions [11]: 

 kdst ZdivZ   with    |ˆ| dstdst ZZ  ..….(15) 

Therefore, in this case, in order to extract the geometric maps  dstdstdst ZYX ,,  it suffices 

that we solve 3 independent Poisson equations of the above type. See Figures 10 , 11 for 

a result produced with this method. 

 

Conclusion 
We have presented a new approach for obtaining photorealistic and interactive 

walkthroughs of large, outdoor scenes. To this end a new hybrid data structure has been 

presented, which is called “morphable 3D­mosaics''. No global model of the scene needs 

to be constructed and at any time during the rendering process, only one “morphable 

3D­mosaic'' is displayed. This enhances the scalability of the method to large 
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environments. In addition, the proposed method uses a rendering path, which is highly 

optimized in modern 3D graphics hardware and thus can produce photorealistic 

renderings at interactive frame rates. In the future we intend to extend our rendering 

pipeline so that it can also take into account data from sparse stereoscopic views that 

have been captured at locations throughout the scene and not just along a predefined path. 

This could further  enhance the quality of the rendered scene and would also permit a 

more extensive exploration of the virtual environment. Moreover, this extension still fits 

perfectly to the current architecture of the 3D­accelerated rendering pipeline (a blending 

of multiple local models will still be taking place). 

 

Figures and Tables 
 

 
Figure 1: The modeling pipeline 

 
 

 
Figure 2: For calibrating our camera we capture images of a chess pattern at random 

positions and orientations 
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Figure 3: Depth map Z0 of a local model (black pixels do not belong to its valid region 

domo 

 
 
 

 
Figure 4: A rendered view of the local model using an underlying triangle mesh 

 

 
 

 
Figure 5: The 2 stages needed for disparity estimation 
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Figure 6: Images ( 1, KK II ) 

 

 

Figure 7: Optical flow vectors on images ( 1, KK II ) 
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Figure 8: Resulting pixels with the neighborhood of p 

 
Figure 9: Scale factors and optical flow magnitudes of images 

 
Figure 10: Destination depth map Zdst 

 
Figure 11: Rendered views of morphable 3D­model during transition from key position 

corresponding to image 
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Figure 12: Pixel shader code (and the associated vertex shader code), written in GLSL 

(OpenGL Shading Language), for implementing the photometric morphing 

 

 
Figure 13: Skeleton code in C for applying vertex blending in OpenGL 
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